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Abstract

Empirical studies find that the pass-through of input cost changes to prices is

incomplete: a 10 percent increase in costs causes downstream prices to rise less than

10 percent, even at long horizons. Using microdata from gas stations, food products,

and manufacturing industries, we find that incomplete pass-through in percentages

often disguises complete pass-through in levels: a $1/unit increase in input costs leads to

$1/unit higher downstream prices. Pass-through appears incomplete in percentages

due to a gap between prices and costs. Complete pass-through in levels contrasts

with workhorse macroeconomic models that feature homothetic demand systems.

We identify an alternative class of demand systems that yields pass-through in levels

and highlight four implications. First, measuring pass-through in percentages can

lead to spurious evidence of asymmetry and size-dependence. Second, pass-through

in levels can explain dynamics of industry gross margins, operating profits, and entry

in the data that are at odds with workhorse models. Third, demand systems that

generate pass-through in levels can explain different pass-through rates for labor costs

relative to other inputs. Finally, incorporating pass-through in levels into an input-

output model of the U.S. economy can reconcile the low volatility of consumer price

inflation with microeconomic estimates of markups.
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1 Introduction

Empirical work in macroeconomics and trade typically measures the pass-through of
cost changes to prices in percentages. A large body of work studying pass-through in
this way finds evidence of incomplete pass-through: when input costs rise by 10 percent,
downstream prices increase by less than 10 percent (see, e.g., Hellerstein 2008; Nakamura
and Zerom 2010; De Loecker, Goldberg, Khandelwal, and Pavcnik 2016). Pass-through
remains incomplete even at long horizons and after accounting for the input’s share in
variable costs. To account for this evidence, previous work has developed flexible demand
systems in which the extent of pass-through is determined by forces such as market power,
consumer heterogeneity, and the curvature of consumer preferences (e.g., Atkeson and
Burstein 2008; Klenow and Willis 2016; Amiti, Itskhoki, and Konings 2019).

In this paper, we instead measure the pass-through of input costs to downstream
prices on an absolute, “dollars-and-cents” basis. We study a set of markets where we
can precisely measure this pass-through in levels. Specifically, we study the pass-through
of wholesale gasoline costs to retail stations’ prices, the pass-through of food commodity
costs to retail food prices, and the pass-through of input costs to output prices for industries
spanning the U.S. manufacturing sector.

In nearly all cases, we find that firms exhibit complete pass-through in levels: a one
dollar per unit increase in input costs leads downstream prices to increase by one dollar.
Complete pass-through in levels explains why pass-through measured in percentage terms
appears incomplete: when price is greater than marginal cost, a one dollar increase is a
smaller percentage change in price than in marginal cost. Thus, complete pass-through in
levels implies that the “log pass-through” is incomplete.

Across the markets we study, we find that complete pass-through in levels explains
not only the extent of incomplete log pass-through but also the cross-sectional variation
in log pass-through across firms and products in a market. In response to a common cost
shock, products with a larger gap between prices and input costs have lower log pass-
through. These systematic differences in pass-through disappear when pass-through is
instead measured in levels.

Complete pass-through in levels poses a challenge for workhorse models in macroeco-
nomics that represent industry demand using homothetic demand systems. Homothetic
demand systems are widely used because they impose that the quantity demanded from
each firm depends only on its price relative to other firms and total industry sales, making
them particularly tractable. However, we show that homothetic demand systems predict
that industry-wide cost shocks are passed through completely in logs, rather than in lev-
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els. Complete log pass-through in turn implies that the pass-through in levels is equal to
firms’ gross markups and thus exceeds one.

This result arises because homothetic demand systems satisfy a property that we call
scale invariance: a proportional change in all firms’ prices leaves firms’ demand elasticities
unchanged. Thus, firms maintain constant percentage markups in response to an industry-
wide cost shock. This applies to the standard constant elasticity of substitution (CES)
preferences as well as to richer demand systems designed to account for incomplete
pass-through, such as Kimball (1995) preferences, nested CES preferences (Atkeson and
Burstein 2008), and HSA preferences (Matsuyama and Ushchev 2017). While those richer
demand systems can accommodate incomplete pass-through of idiosyncratic shocks that
affect only a subset of firms in an industry, they uniformly predict complete log pass-
through of common cost shocks, at odds with our evidence of complete pass-through in
levels.

We show that firms exhibit complete pass-through in levels of common cost shocks if
demand instead satisfies a property that we term shift invariance. When demand is shift
invariant with respect to the prices of a set of firms, a uniform shift in those firms’ prices
scales each firm’s residual demand curve by a constant factor. As a result, when firms
experience a common cost shock, they retain fixed “additive markups”—defined as the
absolute gap between price and marginal cost—and pass the cost shock through to prices
one-for-one in levels.

While the class of demand systems that satisfies shift invariance excludes homothetic
preferences, it encompasses a variety of alternative models. For example, it includes
models like the nested logit and mixed logit models, where heterogeneity in firm and
consumer attributes generates rich patterns of substitution across firms (e.g., Nevo 2001).
It also includes several models of spatial competition, such as the Hotelling (1929) and
Salop (1979) models, in which firm market power is derived from the transport costs that
consumers incur to visit nearby versus faraway stores. We show that demand systems
that satisfy shift invariance can also vary flexibly in their predictions for how firms pass
through idiosyncratic cost shocks and can preserve the neutrality of relative prices and
quantities to changes in the aggregate price level.

It is worth emphasizing that shift-invariant demand systems generate complete pass-
through in levels while maintaining standard assumptions about imperfect competition
and the link between firm markups and demand elasticities. Of course, an alternative
explanation for complete pass-through in levels is perfect competition. Under perfect
competition, price equals marginal cost, and cost changes are reflected one-for-one in
prices. Yet, perfect competition is at odds with several other features of the data: sluggish
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price adjustment, price dispersion for identical products, finite firm-level demand elastici-
ties, and evidence that firms’ prices are elevated over available measures of costs. In other
words, while the dynamics of prices relative to costs resemble perfect competition, price
levels indicate some degree of imperfect competition. Shift-invariant demand systems
offer a way of reconciling these seemingly conflicting empirical facts.

In the final part of the paper, we propose that complete pass-through in levels can
explain several phenomena that are considerably more difficult to explain in standard
models with homothetic preferences. We highlight four implications.

First, when pass-through is complete in levels, measuring pass-through in percentages
can lead to asymmetry (different pass-through rates for cost increases vs. decreases)
and size-dependence (different pass-through rates for large vs. small shocks), as well
as systematic heterogeneity in pass-through by firm size and product quality. These
patterns arise from imposing a log specification to measure pass-through when firms
exhibit complete pass-through in levels.

Second, pass-through in levels can explain dynamics of industry gross margins, oper-
ating margins, and entry in the data that are at odds with workhorse models. In standard
models of industry dynamics à la Dixit and Stiglitz (1977), homothetic preferences imply
that an increase in input costs leads to higher profits per unit sold, which results in new
firm entry or higher operating profits for incumbent firms. Neither of these patterns—
swings in firm entry or operating profits—accompanies input cost fluctuations in the data.
We show that replacing homothetic preferences with shift-invariant demand systems can
bridge this gap between model and data. When demand is shift invariant, a rise in input
costs leads gross margins to fall, reducing the degree to which operating profits or en-
try need to adjust to maintain equilibrium. The response of gross margins to input cost
changes across industries confirms these predictions.

Third, a simple model with shift-invariant demand can explain apparent differences
in the pass-through of labor and materials costs. Okun (1981) observed that firms seem to
pass through materials costs on a “dollars-and-cents basis” but pass through changes in
unit labor costs “with a percentage markup.” These observations are difficult to explain in
a rational model of firm behavior: why should a cost-minimizing firm treat one component
of costs differently from others? We show that a model in which consumers purchase
varieties from firms alongside an outside, numeraire good produced with labor can resolve
this puzzle. In this setting, the price of labor affects both firms’ costs of production and
households’ marginal value of consumption. Thus, firms exhibit complete pass-through in
levels of material costs but complete log pass-through of labor costs, because movements
in the price of labor also change firms’ desired additive markups. In the data, we show that
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accounting for labor’s effect on the numeraire restores complete pass-through in levels for
both labor and materials costs.

Finally, we show that pass-through in levels can explain the low volatility of consumer
price inflation relative to commodity prices. We calibrate an input-output model of the U.S.
economy and compare two cases: one where firms maintain fixed percentage markups,
as in standard models, and another where firms have additive markups, consistent with
complete pass-through in levels. Given the historical path of commodity prices, consumer
price inflation in the model with fixed percentage markups is nearly twice as volatile
as in the data. While one could reduce this volatility by expanding the definition of
firms’ variable costs, doing so leads to implausibly low markups compared to empirical
estimates. In contrast, the model with additive markups naturally matches the volatility
of consumer price inflation in the data while allowing for markups consistent with the
microeconomic evidence.

The outline of the paper is as follows. Section 2 presents a simple example of pass-
through in levels and logs. The following three sections present empirical evidence
of complete pass-through in levels: Section 3 measures pass-through in retail gasoline,
Section 4 in food product markets, and Section 5 in manufacturing industries. We discuss
this evidence and its relationship to prior work in Section 6. Section 7 identifies restrictions
on demand that generate pass-through in levels. Section 8 explores implications of pass-
through in levels, and Section 9 concludes.

Related literature. This paper relates to a large literature that studies theoretical and
empirical determinants of pass-through.1 We focus on the long-run pass-through of
cost shocks that affect all firms in a market. Thus, we abstract from two topics that have
generated large empirical literatures: (1) the pass-through of idiosyncratic shocks that only
affect some firms in a market, and (2) how rigidities influence the speed of transmission.

While most studies in macroeconomics and trade measure pass-through on a percent-
age basis, there are several previous papers that measure pass-through in levels in specific
contexts, especially in the industrial organization literature. We collect a list of previous
studies that measure pass-through in logs and levels in Online Appendix Table A1 and
discuss their findings in Section 6. To preview our discussion, we find that the majority of
these studies find evidence of complete pass-through in levels. There is some variability
in the estimates of pass-through of excise tax changes, with some studies finding evidence

1See e.g., Weyl and Fabinger (2013), Burstein and Gopinath (2014), Mrázová and Neary (2017), Amiti
et al. (2019), and Miravete, Seim, and Thurk (2023, 2025), as well as the list of empirical studies in Online
Appendix Table A1.
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of over-shifting or under-shifting of tax changes; however, studies that employ a larger
sample of tax change events generally find complete pass-through in levels.

Two closely related studies in this literature are Nakamura and Zerom (2010) and
Butters, Sacks, and Seo (2022). Nakamura and Zerom (2010) document that retail and
wholesale coffee prices move one-for-one with coffee commodity prices in levels. How-
ever, the main exercise in Nakamura and Zerom (2010) seeks to account for incomplete
log pass-through, which they attribute to non-commodity input costs and adjustment
in markups. Butters et al. (2022) study how local cost shocks affect retail stores’ prices
and find evidence of complete pass-through in levels for various cost shocks, including
excise taxes, shipping costs, and regulated commodity prices. We add to this evidence
by showing that complete pass-through in levels is not unique to retail stores but holds
for a broader range of producers and markets. Studies of gasoline markets also typically
measure pass-through in levels rather than in logs (e.g., Karrenbrock 1991; Borenstein,
Cameron, and Gilbert 1997; Deltas 2008), but do not explore why complete pass-through
in levels is an appropriate benchmark.2

Finally, our characterization of demand systems that generate complete pass-through
in levels relates to previous studies that explore the relationship between pass-through and
demand. Our definition of shift invariance nests the well-known log-linearity condition
on residual demand curves that lead a firm to pass through individual cost shocks in levels
(see e.g., Bulow and Pfleiderer 1983, Weyl and Fabinger 2013, Mrázová and Neary 2017).
It also nests the linear random utility models defined by McFadden (1981) and Anderson,
de Palma, and Thisse (1992). We discuss the relationship between our restrictions and
other common models of demand in Section 7.

2 Pass-Through in Logs and Levels: A Simple Example

To begin, we illustrate the differences between complete pass-through in logs and levels
in a simple example. Consider a firm that produces an output good using two inputs. We
assume that the firm has a constant returns, Leontief production technology, so that the

2For example, Borenstein (1991) notes, “Though standard economic theory indicates that the percentage
markup over marginal cost is the correct measure of market power, the industry literature and analysis
focuses on the retail/wholesale margin measured in cents.”
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cost of producing y units of the output good is C(y):3

C(y) = y(c + w),

where c is the price of the first input (the “commodity”), w is the price of the second input,
and units of each input required to produce one unit of the output good are normalized
to one. Table 1 shows an example in which c = $1 and w = $1.

In many models, firms’ desired prices p∗ are equal to marginal cost times a fixed
percentage markup, µ:4

p∗ = µ(c + w). (1)

In the example in Table 1, the markup isµ = 2, resulting in an output price of 2($1+$1) = $4.
How does an increase in the commodity price, ∆c, affect the price set by the firm?

Under the pricing rule in (1), the change in the firm’s desired price is

∆p∗ = µ∆c.

The pass-through in levels of a commodity price change to the firm’s desired price is
equal to the markup µ. Typically, in markets with imperfect competition, µ > 1, and so
the pricing rule in (1) predicts that pass-through in levels is greater than one.

Table 1 row (1) shows the pass-through of a $0.20 increase in the commodity price
when the firm has a fixed percentage markup. Since a $0.20 increase in the commodity
price increases marginal costs by 10 percent, the output price also rises by 10 percent, or
$0.40. The pass-through in levels is equal to the markup, µ = 2. The “log pass-through”
is complete if measured with respect to the percent change in marginal cost (10 percent /
10 percent = 1) or equal to the cost share of the commodity input if measured with respect
to the percent change in the commodity cost (10 percent / 20 percent = 0.5).

We contrast the pricing rule in (1) with an alternate pricing rule in which the firm’s gap
between output price and marginal cost, measured in dollars and cents, does not change
in response to commodity cost changes:

p∗ = c + w +m. (2)

3Constant returns, Leontief production seems appropriate for the markets we study: e.g., producing an
ounce of ground coffee requires a fixed amount of coffee beans. In Appendix B.5, we consider how pass-
through changes if we relax Leontief production, constant returns to scale, or uncorrelated other variable
costs. Each requires knife-edge conditions to deliver complete pass-through in levels.

4For example, CES with monopolistic competition predicts fixed percentage markups. Even in many
models of variable markups, firms retain fixed percentage markups in response to common cost shocks, as
we will see in Section 7.
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Table 1: Example of pass-through in logs and levels.

Pass-through

Initial New % Change Logs Levels

Commodity cost (c) $1 +$0.20 $1.20 +20%
Other variable costs (w) $1 – $1.00

Total marginal cost $2 +$0.20 $2.20 +10%

Desired output price (p∗)
(1) Fixed percentage markup $4 +$0.40 $4.40 +10% 1.0 2.0
(2) Fixed additive markup $4 +$0.20 $4.20 +5% 0.5 1.0

We refer to m as a fixed additive markup. Under (2), the firm’s desired price instead increases
one-for-one with the change in the commodity cost: ∆p∗ = ∆c. As shown in row (2) of
Table 1, when the firm has a fixed additive markup, the percent change in the output
price appears incomplete relative to the percent change in marginal cost (5 percent vs. 10
percent). The percent change in the output price relative to the commodity price is also
incomplete relative to the initial cost share of the commodity input (5 percent / 20 percent
= 0.25 vs. 0.5). In other words, complete pass-through in levels appears as incomplete log
pass-through.

3 Evidence from Retail Gasoline

Retail gasoline provides an ideal laboratory to study pass-through since there is rich data
on firms’ input costs and gasoline prices exhibit little rigidity. Our main analysis in this
section uses data on the universe of retail gas stations in Perth, Australia, though at the
end of the section we show that retail gasoline markets in the United States, Canada, and
South Korea all exhibit similar patterns.

This section documents four facts. First, the long-run pass-through in levels of whole-
sale costs to retail prices is statistically indistinguishable from one. Second, long-run log
pass-through is incomplete even relative to the share of gasoline in stations’ marginal
costs. Third, there is little heterogeneity in pass-through in levels across stations in the
sample, but substantial variation in log pass-through: stations with a larger gap between
prices and costs have lower log pass-through. Fourth, complete pass-through in levels
explain both cross-sectional heterogeneity in log pass-through and the overall level of
incomplete log pass-through.
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3.1 Station-Level Data from Perth, Australia

We use station-level retail gasoline price data from FuelWatch, a Western Australia gov-
ernment program that has monitored retail gasoline prices since January 2001. Alongside
the introduction of the FuelWatch program in 2001, the Western Australian government
banned intra-day price changes and required all retail gas stations to report planned petrol
prices by 2pm of the prior day. Since 2003, FuelWatch has also provided data on daily
spot prices for wholesale gasoline, called the terminal gas price, across six terminals used
by retail stations. Previous studies using these data include Wang (2009) and Byrne and
de Roos (2017, 2019, 2022).

Following Byrne and de Roos (2019), we take the minimum terminal gas price offered
by the six terminals each day as the input cost faced by retail gas stations. Appendix
Figure A1 shows the weekly average terminal gas price and the retail unleaded petrol
(ULP) price for a single gas station from 2001 to 2022. The retail price is slightly above,
but closely tracks, the terminal gas price. The gap between retail and wholesale prices
visibly increases in 2010. Byrne and de Roos (2019) document that retail gas margins in
Perth increased starting in 2010 due to the emergence of tacit collusion across stations, a
feature of the market that we exploit later in the analysis.

3.2 Empirical Results

Complete pass-through in levels. We begin by measuring the pass-through in levels of
wholesale gasoline costs to retail stations’ prices. To measure the long-run pass-through
of cost changes to prices, we estimate the distributed lag regression

∆pit =

K∑
k=0

bk∆ct−k + ai + ϵit, (3)

where ∆pit is the change in station i’s retail price from week t− 1 to t, ∆ct−k is the change in
the input cost from t − k − 1 to t − k, ai are station fixed effects, and ϵit is a mean zero error
term. The coefficients bk measure the change in the output price associated with a change
in input costs k periods ago. Accordingly, the long-run pass-through of a change in the
input cost ∆c to prices is given by the sum of the coefficients,

∑K
k=0 bk. This specification is

standard for measuring the long-run pass-through of cost changes to prices (e.g., Campa
and Goldberg 2005, Nakamura and Zerom 2010), though we measure both price and cost
changes in levels rather than in logs.

Our use of specification (3) is due to the fact that, as in Campa and Goldberg (2005)
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Figure 1: Pass-through of unleaded petrol wholesale costs to prices in levels and logs.
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(a) Pass-through in levels.
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(b) Pass-through in logs.

Note: Panels (a) and (b) show cumulative pass-through estimated from specifications (3) and (4). Standard
errors are two-way clustered by postcode and year, and standard errors for cumulative pass-through
coefficients

∑t
k=0 bk and

∑t
k=0 βk are computed using the delta method.

and Nakamura and Zerom (2010), our regressors are highly persistent. As we show in
Appendix Table A2, autocorrelation coefficients for wholesale gasoline prices (and each
of the other commodity price series we study) are very close to one, and we are unable
to reject the hypothesis of a unit root in input prices using an Augmented Dickey-Fuller
test.5 While commodity prices are approximately unit root, they appear stationary in
first-differences, enabling correct inference in (3). We also check in Appendix Table A3
that the direction of causality runs from upstream input costs to downstream prices and
not vice versa, using Granger causality tests. In all cases, we do not find evidence that
downstream prices Granger-cause upstream commodity prices.

Figure 1 shows the estimated pass-through of changes in unleaded petrol (ULP) whole-

5We show formally in Appendix Proposition B1 that in a model with time-dependent pricing frictions,
if firms have fixed percentage markups µ, the long-run pass-through

∑K
k=1 bk = µ as K becomes large and

the persistence of the commodity cost ρ → 1. Even if commodity prices are not exactly unit root, under
reasonable parameters (e.g., firms reset prices every 12 periods, and ρ = 0.96, which is the minimum
autocorrelation in Appendix Table A2), the bias in the measure of µ is small.
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sale prices to station retail prices over a horizon of eight weeks. By three weeks, the
pass-through in levels is statistically indistinguishable from one, and the point estimate
for long-run pass-through at eight weeks is 0.991 (standard error 0.038). Estimates of the
pass-through of premium unleaded (PULP) wholesale prices to retail prices (Appendix
Figure A2) are similar: the long-run pass-through in levels is 0.985 (0.036) and is statisti-
cally indistinguishable from one. Further increasing the horizon over which pass-through
is estimated has little effect on the estimated long-run pass-through.

Incomplete log pass-through. For comparison with previous studies that measure pass-
through using percentage changes in input costs and prices, we estimate the long-run “log
pass-through” using the specification,

∆ log pit =

K∑
k=0

βk∆ log ct−k + αi + ϵit. (4)

The long-run log pass-through is given by the sum of the coefficients,
∑K

k=0 βk. The lower
panel of Figure 1 shows that log pass-through of unleaded petrol (ULP) costs to retail
prices at eight weeks is 0.899 (0.043) and is statistically different from one at a 1 percent
level. The log pass-through of premium unleaded (PULP) wholesale costs to retail prices
is likewise significantly below one at 0.887 (0.041) (see Appendix Figure A2).

One reason that log pass-through may be incomplete is the presence of other variable
costs besides gasoline. When stations have fixed percentage markups, the log pass-
through of changes in the wholesale gasoline cost should equal the share of stations’
marginal costs spent on gasoline. As previously documented by Byrne and de Roos
(2019), retail prices in the Perth market follow weekly price cycles, jumping on Tuesdays
or Thursdays and then falling over the course of the week. Under the assumption that
gas stations never set prices below marginal cost,6 we can use the days of the week at the
lowest point of the price cycle to calculate an upper bound on the share of other variable
costs in stations’ marginal costs, and thus a lower bound for the cost share of gasoline.
Averaging across all weeks and all stations, we find a lower bound for the cost share of
gasoline of 0.98 for unleaded petrol and 0.96 for premium unleaded petrol. The estimated
log pass-throughs, at 0.899 and 0.887, are significantly different from these cost shares at
the 1 percent level. Thus, the log pass-through of gasoline costs is incomplete even after
accounting for the cost share of gasoline.

6This is the case in the Maskin and Tirole (1988) model of price cycles.
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Exploiting variation in markups. While our point estimates for pass-through in levels
(0.991 and 0.985) are very close to one, they do not rule out low markups that would be
plausible in this setting. We further test for whether firms set fixed percentage markups
by exploiting cross-sectional and time series variation in markups. If stations set fixed
percentage markups, and if some stations have higher markups than others, then the
pass-through in levels for high-markup stations should be higher than their low-markup
counterparts. We estimate the specification,

∆pit = α + δ∆ct + γAvg. Markupit + β(∆ct ×Avg. Markupit) + εit. (5)

where ∆pit and ∆ct are changes in station i’s price and the wholesale cost over the prior
sixteen weeks, Avg. Markupit is a measure of station markups, and εit is a mean-zero error.

With fixed percentage markups, the coefficient on the interaction term β > 0. For
example, if some stations set a fixed 2 percentage markup and other stations set a fixed
5 percentage markup, pass-through in levels should be 1.05 for the high-markup stations
compared to 1.02 for the low-markup stations. On the other hand, if all stations exhibit
complete pass-through in levels, the interaction coefficient β ≈ 0. (An analogous intuition
applies to time periods where stations charge higher or lower fixed percentage markups.)

We use two measures for Avg. Markupit, along with instruments for both that are
intended to isolate variation in markups from variation in non-gasoline variable costs.
The first measure exploits variation in markups across stations: Avg. Station Markupi

is the average ratio of station i’s retail price to the wholesale cost of gasoline over all
weeks in the sample. To isolate variation in markups from non-gasoline variable costs, we
instrument for Avg. Station Markupi with the average amplitude of price cycles of station
i, that is, the difference between the maximum and minimum retail margin charged by i
in each week, averaged over all weeks. While the ratio of stations’ prices to wholesale
costs may also capture variation in non-gasoline variable costs, this instrument isolates
variation in markups across stations coming from the intensity of stations’ price cycles.

The second measure instead exploits variation in markups over time: in each quarter
t, we construct the average retail price over wholesale cost for all gas stations in Perth,
denoted Avg. Quarter Markupt. To instrument for Avg. Quarter Markupt, we take ad-
vantage of the fact that the emergence of coordinated price cycles in the Perth market
was, according to Byrne and de Roos (2019), “unrelated to market primitives.” Appendix
Figure A3 shows that average gas station margins over time co-move closely with the
degree of coordination in price cycles, measured as the R2 from a regression of daily
margins on day-of-week fixed effects. We use this measure of price coordination over
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Table 2: Complete pass-through in levels: No heterogeneity by station markup.

(1) (2) (3) (4) (5)
∆Priceit (OLS) (OLS) (IV1) (OLS) (IV2)

∆Costt 0.950∗∗ 0.989∗∗ 0.952∗∗ 0.987∗∗ 0.971∗∗

(0.021) (0.037) (0.044) (0.034) (0.043)
∆Costt ×Avg. Station Markupi (Net %) -0.005 -0.000

(0.003) (0.005)
∆Costt ×Avg. Quarter Markupt (Net %) -0.003 -0.002

(0.003) (0.004)

N 312215 312215 312215 312215 312215
R2 0.89 0.89 0.89 0.89 0.89

Note: The table reports the coefficients γ and β estimated using specification (5). Changes in retail prices
and wholesale costs are taken over 16 weeks. For readability, we include Avg. Markupit on a net % basis
(i.e., a markup of 1.1 is a 10% net markup). Column 3 (IV1) uses the average amplitude of stations’ price
cycles as an instrument for Avg. Station Markupi. Column 5 (IV2) uses the quarterly R2 of station margins
on day-of-week dummies as an instrument for Avg. Quarter Markupt. Standard errors two-way clustered
by postcode and year.

time—the quarterly R2 of station margins on day-of-week dummies—as an instrument
for Avg. Quarter Markupt.

Table 2 reports the results. Column 1 omits the average markup and interaction term.
A $1 change in the wholesale cost of unleaded petrol (ULP) over 16 weeks is associated
with a $0.95 change in the retail station price over the same period. Columns 2–5 include
the interaction of wholesale cost changes with markups, with columns 3 and 5 using the
instruments discussed above. In all cases, the estimated coefficient on the interaction term
β ≈ 0, consistent with uniform pass-through in levels across stations and time periods.
In other words, we find evidence of complete pass-through in levels across stations and
across time periods, rejecting the hypothesis of fixed percentage markups.

Pass-through in levels explains heterogeneity in log pass-through. Table 3 reports
estimates from an analogous specification that instead measures the pass-through of
changes in log costs to changes in log prices,7

∆ log pit = α + δ∆ log ct + γAvg. Markupit + β(∆ log ct ×Avg. Markupit) + εit. (6)

Column 1 shows that a 1 percent change in wholesale costs over 16 weeks leads to a

7Since Table 2 suggests that stations’ markups are “additive,” it may be preferable to estimate specifica-
tion (6) using a measure of stations’ additive markups. We find that doing so yields similar results.
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Table 3: Incomplete log pass-through is explained by station markups.

(1) (2) (3) (4) (5)
∆ log(Price)it (OLS) (OLS) (IV1) (OLS) (IV2)

∆ log(Cost)t 0.870∗∗ 0.998∗∗ 0.968∗∗ 0.977∗∗ 0.967∗∗

(0.031) (0.035) (0.041) (0.026) (0.033)
∆ log(Cost)t ×Avg. Station Markupi (Net %) -0.015∗∗ -0.011∗∗

(0.003) (0.004)
∆ log(Cost)t ×Avg. Quarter Markupt (Net %) -0.010∗∗ -0.010∗∗

(0.002) (0.003)

N 312215 312215 312215 312215 312215
R2 0.88 0.89 0.89 0.89 0.89

Note: The table reports the coefficients γ and β estimated using specification (6). Changes in log retail prices
and log wholesale costs are taken over 16 weeks. For readability, we include Avg. Markupit on a net % basis
(i.e., a markup of 1.1 is a 10% net markup). Column 3 (IV1) uses the average amplitude of stations’ price
cycles as an instrument for Avg. Station Markupi. Column 5 (IV2) uses the quarterly R2 of station margins
on day-of-week dummies as an instrument for Avg. Quarter Markupt. Standard errors two-way clustered
by postcode and year.

0.87% change in retail prices, significantly below the cost share of gasoline. Columns 2–5
estimate specification (6), exploiting cross-sectional variation in markups (columns 2–3)
or time series variation in markups (columns 4–5) in turn. Two findings emerge. First,
higher markups lead to more incomplete log pass-through.8 Second, the gap between
price and costs appears to fully account for incomplete pass-through: the coefficient on
∆ log ct in columns 3 and 5 shows that as net markups approach zero, the log pass-through
is tightly estimated around the cost share of 0.98.

Thus, Table 3 shows that incomplete log pass-through is rationalized by the combi-
nation of complete pass-through in levels (documented in Table 2) with a gap between
stations’ prices and marginal costs. Log pass-through is lower both for stations in the
cross-section and periods in the time series with higher markups. The size of the gap
between output prices and gasoline input costs explains both the level of incomplete log
pass-through and variation in log pass-through across stations.

Robustness. Appendix Table A4 compares pass-through estimates from Perth to esti-
mates from retail gasoline markets in Canada, South Korea, and the United States (Ap-

8In fact, complete pass-through in levels predicts that the interaction coefficient in the log specification
β ≈ −0.01. If stations set prices p = c + w + m, where m is an additive markup, to a first order, ∆ log p ≈
χµ−1∆ log c ≈ χ(1−0.01µnet,%)∆ log c, where χ = c/(c+w) is the cost share (0.96–0.98 in the data), µ = p/(c+w)
is the percentage markup, and µnet,% = 100(µ − 1).
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pendix C describes the data sources for each). Incomplete log pass-through and complete
pass-through in levels appear across all the studied markets. The evidence from other
geographies suggests that complete pass-through in levels is not a quirk of the Australian
data, but rather describes price dynamics across a number of retail gasoline markets.

One might be concerned that our estimates of pass-through are biased downward due
to reverse causality from downstream demand to commodity prices. While the Granger
causality tests in Appendix Table A3 suggest that causality primarily runs from upstream
commodity prices to downstream retail prices, as an additional check, Appendix Table A4
estimates pass-through using oil supply news shocks from Känzig (2021) to instrument for
upstream cost changes. While the instrumented regressions produce somewhat noisier
estimates of long-run pass-through in levels and logs, they remain qualitatively consistent
with our baseline results.

4 Evidence from Food Products

In this section, we explore the pass-through of commodity costs to retail prices for food
products. We are able to measure pass-through in levels for these goods by carefully
matching the amount of commodity inputs required to produce each downstream product.

For five out of six staple food products, we find that pass-through in levels is statis-
tically indistinguishable from one. Using scanner data to compare individual products
within product categories, we further document that uniform pass-through in levels ex-
plains systematic patterns of heterogeneity in log pass-through across products. Finally,
extending our analysis to a broader array of food products, we find that prices of identical
products sold across retail chains also conform with complete pass-through in levels.

4.1 Data on Food Retail and Commodity Prices

Retail prices. For retail prices of food products, we use Average Price Data from the
Bureau of Labor Statistics (BLS). In contrast to the consumer price index data, which
reflect relative price changes, the Average Price Data track price levels for a select number
of staple products. For each price series, the BLS chooses narrowly defined, homogeneous
item categories (e.g., “Orange juice, frozen concentrate, 12 oz. can, per 16 oz.”) to minimize
input, quality, and package size differences between included items.

While the BLS Average Price Data allow us to study pass-through of commodity costs
to retail prices over a long time series—many of the series record prices back to 1980—
studying cross-sectional heterogeneity across products in a category requires richer data.
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For these investigations, we use NielsenIQ Retail Scanner data, which includes weekly
barcode-level prices and quantities for products sold at participating stores from 2006 to
2020. These data are collected from point-of-sale systems in retail chains operating across
the U.S., reflecting over $2 billion in annual sales.

Commodity costs. We match these retail food prices with data on commodity costs
from the IMF Primary Commodities Prices database. These commodity price series draw
from statistics of specialized trade organizations or from commodity futures markets—
for example, the commodity price for frozen orange juice concentrate is from next-month
futures contracts for the delivery of grade-A frozen concentrated orange juice solids
traded on the Intercontinental Exchange (ICE). Appendix Table A5 provides a full list of
the commodity price series and the underlying data sources used by the IMF.

Measuring pass-through in levels requires carefully matching units from commodity
prices to retail prices. For example, to measure pass-through of wheat commodity prices
to retail flour prices requires knowing the quantity of wheat needed per pound of flour
produced. To construct these mappings from commodity units to retail units, we rely on
previous literature and on documentation from the USDA. Appendix Table A6 provides
the conversion factors from commodity prices to retail prices for each series and delineates
the sources and assumptions used to build each conversion factor.9

Matched products. Of the food products tracked by the BLS Average Price Data, six
can be clearly matched to IMF commodity inputs. These are roasted ground coffee,
sugar, ground beef, white rice, all-purpose flour, and frozen orange juice concentrate.
Appendix Table A6 lists the corresponding Average Price Data series IDs. For three of
these products—rice, flour, and coffee—we also investigate cross-sectional pass-through
patterns by matching the food product to a NielsenIQ product category.10

9This careful matching of units is why measuring pass-through in levels is difficult for highly differen-
tiated products. The challenges in measuring pass-through in levels, along with the fact that homothetic
preferences imply a benchmark of complete log pass-through, are perhaps why pass-through in levels has
not been measured across a wide set of markets previously. At the end of the section, we exploit the fact
that retailers set different prices for identical products to test for pass-through in levels at the retail level
across several other products in the NielsenIQ data.

10The corresponding NielsenIQ product modules are “Rice - Packaged and bulk,” “Flour - All purpose
- White wheat,”, and “Ground and whole bean coffee.” Beef products are spread across several modules,
and the “Sugar - granulated” and “Fruit juice - orange - frozen” modules have few unique products.
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Table 4: Long-run pass-through of commodity costs to retail food prices.

Pass-through (12 mos.)
Commodity Final Good (BLS) Logs Levels

Arabica coffee Coffee, 100%, ground roast 0.466 (0.051) 0.946† (0.099)
Sugar, No. 16 Sugar, white 0.370 (0.035) 0.691 (0.072)
Beef Ground beef, 100% beef 0.410 (0.068) 0.899† (0.126)
Rice, Thailand Rice, white, long grain, uncooked 0.307 (0.049) 0.882† (0.169)
Wheat Flour, white, all purpose 0.240 (0.048) 0.865† (0.160)
Frozen orange juice Orange juice, frozen concentrate 0.327 (0.040) 0.974† (0.111)

Note: Long-run pass-through in levels and logs is
∑K

k=0 bk and
∑K

k=0 βk from specifications (3) and (4), using
a horizon of K = 12 months. For goods with several BLS Average Price series, we report Driscoll-Kraay
standard errors; otherwise, we use Newey-West standard errors. † indicates estimates for which a pass-
through of one is within the 90 percent confidence interval.

4.2 Empirical Results

Nearly all products exhibit complete pass-through in levels. We measure the pass-
through of commodity costs to retail prices for each food product in levels and logs using
the distributed lag regressions (3) and (4) described in Section 3. As in the case of gasoline,
each of the food commodity price series has an autocorrelation coefficient close to one,
but appears stationary in first-differences (Appendix Table A2), enabling correct inference
with the standard distributed lag specification. We also verify that retail price movements
do not predict future changes in upstream commodity prices using Granger causality
tests (Appendix Table A3) and by estimating the pass-through of leads of commodity cost
changes to retail prices (Appendix Table A7).

Table 4 reports estimates of long-run pass-through in levels and logs from specifications
(3) and (4) for six food products. In five of the six products, long-run pass-through in levels
is statistically indistinguishable from one. The exception is sugar, where the estimated
pass-through in levels falls short of one. Note that the pass-through in levels of commodity
costs to retail prices is a particularly strict test of fixed percentage markups, because it
should detect if any firm along the chain of producers from commodity to retailer sets
a gross markup greater than one. Complete pass-through in levels implies log pass-
through is incomplete and, as expected, we estimate that the long-run log pass-through
is significantly below one for all six food products.

Figure 2 shows an example of the price series and pass-through estimates for roasted
ground coffee. As shown in panel (a), Arabica coffee commodity prices exhibit substantial
volatility, with large spikes in 1986, 1994, 1997, 2011, and 2014 due largely to weather
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conditions in Brazil and Colombia. These run-ups in commodity prices are followed by
increases in the retail prices recorded by the BLS. Panel (b) shows the pass-through in levels
from coffee commodity prices to retail prices occurs with a lag, but approaches complete
pass-through by eight months and stays around one thereafter. The log pass-through, in
panel (c), instead plateaus below one-half. These results are consistent with Nakamura
and Zerom (2010), who estimate pass-through in the roasted ground coffee market from
2000–2005. Analogous figures for the other five food products are in Appendix A.11

Pass-through in levels explains variation in log pass-through across products. The
complete pass-through in levels documented in Table 4 has predictions for price changes
in the cross-section of products. First, products that have higher markups and higher
non-commodity input costs should exhibit lower log pass-through (as we saw in the
cross-section of retail gas stations in Section 3). Second, pass-through in levels should be
similar across products regardless of their markups and non-commodity input costs.

To test these predictions, we use NielsenIQ data on rice, flour, and coffee products from
2006 to 2020. We define a product as a specific UPC (universal product code, or product
barcode) sold at a specific retail chain, since prices for a UPC tend to be fairly uniform
within retail chains (DellaVigna and Gentzkow 2019). In each quarter t, we calculate the
price pit of product i as the quantity-weighted average unit price over all transactions. For
each product in each quarter, we then measure the change in the product’s price over the
next year in levels (∆pit = pit+4 − pi,t) and in logs (∆ log pit = log pit+4 − log pit). Since these
price changes are measured year over year, they avoid seasonality effects that may bias
measures of price changes calculated over smaller time increments.12

Under the assumption that firms face identical commodity costs, we can use the unit
price (e.g., the price per ounce of coffee) as a measure of each product’s non-commodity
variable costs and markups. Thus, to test the above predictions for how pass-through
in logs and levels varies with the level of non-commodity variable costs and markups,
we group products in each product category by unit price in each quarter t. To ensure
that these product groups capture persistent differences in unit price, we use products’
average unit prices over the prior year.

As an example, Figure 3 plots average inflation rates and price changes in levels for

11Appendix Figure A4 shows that the pass-through in levels of coffee commodity cost changes to retail
prices is similar using exchange rate shocks and weather shocks to instrument for commodity prices.

12Nakamura and Steinsson (2012) point out that using product-level data to measure pass-through
may bias measurement when there is frequent product turnover. For these categories, over 75 percent
of products in each quarter are observed in the following year, and turnover does not appear correlated
with commodity inflation in a way that would downward bias measured pass-through: the correlation of
commodity inflation with turnover is −0.03 for rice, −0.09 for flour, and −0.09 for coffee products.
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Figure 2: Pass-through of coffee commodity costs to retail prices.
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(a) Arabica coffee commodity costs (IMF) and retail ground coffee prices (U.S. CPI).

0 2 4 6 8 10 12
Months after cost change

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
ha

ng
e 

in
 re

ta
il 

pr
ic

e

(b) Pass-through in levels.
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(c) Pass-through in logs.

Note: Panel (a) plots the time series of the commodity price from the IMF and the Average Price Data series
from the BLS. The series are adjusted by the conversion factors in Appendix Table A6 so that the two series
are in comparable units. Panels (b) and (c) plot the cumulative pass-through to month T,

∑T
k=0 bk, from the

specifications (3) and (4), using a total horizon of K = 12 months.
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Figure 3: Inflation and price changes of rice products by tercile of unit price.
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Note: Both panels plot price changes for rice products in the NielsenIQ scanner data. In each quarter,
products are separated into three groups with equal quarterly sales by average unit price over the prior
year. Panel (a) plots the sales-weighted average inflation rate over the next year for products in each group,
alongside commodity rice inflation. Panel (b) plots the sales-weighted average change in price levels over
the next year for products in each group.

19



Table 5: Higher-priced products have lower log pass-through, but no systematic difference
in pass-through in levels.

Panel A: In percentages

∆ Log Retail Price
Rice Flour Coffee

∆ Log Commodity Price ×Mid Unit Price −0.075** −0.007 −0.064**
(0.014) (0.009) (0.015)

∆ Log Commodity Price × High Unit Price −0.150** −0.045** −0.091**
(0.022) (0.009) (0.017)

UPC FEs Yes Yes Yes
N (thousands) 399.4 101.4 1570.0
R2 0.15 0.05 0.14

Panel B: In levels

∆ Retail Price
Rice Flour Coffee

∆ Commodity Price ×Mid Unit Price 0.059 0.027 −0.069
(0.052) (0.040) (0.046)

∆ Commodity Price × High Unit Price 0.042 −0.067 −0.099*
(0.100) (0.044) (0.058)

UPC FEs Yes Yes Yes
N (thousands) 399.4 101.4 1570.0
R2 0.07 0.05 0.14

Note: Panel A reports results from specification (7), and panel B reports results from specification (8). In each
quarter, products are split into three groups with equal sales by average unit price over the past year; the
Mid- and High Unit Price variables are indicators for the middle and highest-priced groups. Regressions
weighted by sales. Standard errors clustered by brand. * indicates significance at 10%, ** at 5%.

these three groups of rice products. As shown in the top panel, a run-up in rice commodity
prices into 2008 led to much higher inflation for rice products with lower unit prices—the
average inflation rate for low-unit-price rice products reached nearly 70 percent in 2008,
compared to under 25 percent for high-unit-price products.13 These differences disappear
when comparing the price changes in levels in the bottom panel: products in all unit price
groups had roughly the same increase in absolute prices.

To formally test how pass-through in logs and levels varies in the cross-section of

13The run-up in rice prices was prompted by adverse weather shocks to wheat-growing areas from
2006–2008, and subsequent trade restrictions by Vietnam, India, and other major rice-exporting countries to
ensure adequate rice supply for their domestic markets. See Childs and Kiawu (2009) for a detailed account.

20



products, we estimate the following specifications,

∆ log pit = αi + β1∆ log ct +

3∑
g=2

βg
(
1{G(i, t) = g} × ∆ log ct

)
+ εit, (7)

∆pit = αi + β1∆ct +

3∑
g=2

βg
(
1{G(i, t) = g} × ∆ct

)
+ εit, (8)

where G(i, t) ∈ {1, 2, 3} is the unit price group of product i in quarter t, ∆ log ct and ∆ct are
changes in commodity prices over the next year in logs and levels, and αi are product
fixed effects.

Across product groups, panel A shows that the sensitivity of log retail prices to com-
modity inflation systematically declines with unit price across all three product categories
(rice, flour, and coffee). In contrast, panel B finds little evidence of systematic differences
in the sensitivity of retail price changes to commodity price changes in levels across unit
price groups. Appendix Table A8 shows similar results if we instead split products into
five unit price groups.

Thus, evidence from all three categories suggests that products exhibit uniform pass-
through in levels of commodity cost changes. This uniform pass-through results in
heterogeneous log pass-through rates across products, with lower log pass-through for
higher-priced products.

Effects of cost changes on price distributions. A complementary approach is to identify
how changes in commodity costs affect the distribution of retail prices across products
in a category. Pass-through in levels predicts that increases in commodity costs should
have no long-run effect on the dispersion of prices in levels—the price distribution should
simply shift to the right—but should reduce the dispersion of log prices.14 We test these
predictions in Appendix Table A9 for rice, flour, and coffee products. We find that an
increase in commodity prices has no significant effect on the dispersion of price levels,
but leads to a decline in the dispersion of log prices. Thus, the response of retail price
distributions to commodity cost changes for these goods is also consistent with complete
pass-through in levels across products in each category.

14In the short run, cost changes may increase price dispersion due to nominal rigidities, which are separate
from the effects of cost changes on the long-run price distribution. It is challenging to cleanly isolate the
effects of commodity costs on the long-run price distribution from short-run effects on price dispersion.
Measuring the long-run pass-through to prices of individual products is comparatively straightforward.

21



4.3 Pass-Through at the Retail Level: Evidence from Identical Products

So far, we have measured pass-through in levels for specific products by matching input
costs to downstream prices. Our next exercise tests for pass-through in levels across a
much broader range of product categories, albeit only at the retailer level. We exploit
the fact that different retailers often sell the same product at different prices (Kaplan and
Menzio 2015). Even without directly observing input costs, we can use price movements
of the same product across different retailers to test for pass-through in levels and in logs.

Exploiting variation in prices across retailers. To fix ideas, consider two retail stores
selling the same UPC, one at a low price (store A) and one with a high price (store B). As
an example, Appendix Figure A10 shows the price of the same coffee UPC at two different
stores in Philadelphia. Excluding some temporary sales, store B consistently charges a
higher price than store A. If both stores A and B have fixed percentage markups, when
the cost of the UPC rises, the price at store B (the retailer with the higher markup) should
rise more in levels. On the other hand, if both stores exhibit complete pass-through in
levels, when the cost of the UPC rises, the absolute price change in both store A and store
B should be similar, and the price change in percentage terms for store B should be lower.

We formalize this logic in Table 6, which predicts how the price of a UPC at retailer i
changes in levels and logs, depending on whether retailers set fixed percentage markups
or additive markups. The first part of the table shows the pass-through of UPC cost
changes to prices in both levels and logs. If retailers have fixed percentage markups,
the pass-through is equal to the retailer’s markup µi in levels and is complete in logs.
If retailers have fixed additive markups, the pass-through is instead complete in levels
and equal to the ratio of the UPC cost to the retailer’s price in logs. The second part
of the table shows that, even without directly observing changes in the cost of a UPC,
we can differentiate between percentage and additive markups by comparing how the
retailer’s price for a UPC changes compared to the average price change across retailers
for the same UPC. Intuitively, if retailers have fixed percentage markups, then a retailer
with high prices should exhibit higher pass-through in levels than the average, while if
retailers have fixed additive markups, a retailer with high prices should exhibit lower log
pass-through than the average.

We test these predictions using two specifications,

∆pikt = β
level

(
∆p̄kt × RelativePriceikt

)
+ δRelativePriceikt + αkt + εikt, (9)

∆ log pikt = β
log

(
∆ log p̄kt × RelativePriceikt

)
+ δ̃RelativePriceikt + α̃kt + εikt, (10)
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Table 6: Predictions for pass-through across retailers selling identical UPCs.

Percentage markups Additive markups
pi = µic pi = c +mi

Price change relative to cost:
Levels (dpi/dc) µi 1
Logs (d log pi/d log c) 1 c/pi

Price change relative to average:
Levels (dpi/dp̄) ≈ 1 + log(pi/p̄) 1
Logs (d log pi/d log p̄) 1 ≈ 1 − log(pi/p̄)

Predicted interaction coefficient:
Levels specification (9), βlevel 1 0
Logs specification (10), βlog 0 -1

Note: The UPC cost is c, the price of the UPC at retailer i is pi, and the average price across all retailers is p̄.

where ∆pikt is the change in the price of UPC k at retailer i from quarter t to quarter t + 4,
∆ log pikt is same price change measured in logs, ∆p̄kt is the average change in the price
of UPC k from quarter t to quarter t + 4 across all retailers, ∆ log p̄kt is the average log
change in price, and RelativePriceikt = log(pikt/p̄kt) is the log-deviation of UPC k’s price at
retailer i in quarter t relative to the UPC’s average price across retailers. Notice in both
specifications that UPC-quarter fixed effects (αkt and α̃kt) absorb the average price change
in UPC k across retailers, as well as arbitrary UPC demand shocks over time.

The final panel of Table 6 summarizes the predicted coefficients βlevel and βlog under
the two pricing rules. If firms have fixed percentage markups, we predict βlevel

≈ 1 and
βlog
≈ 0. On the other hand, when firms exhibit complete pass-through in levels, the price

change in levels is similar across retailers, so βlevel
≈ 0, and the log pass-through appears

to decline with initial price, so βlog
≈ −1.15

Results. We estimate specifications (9) and (10) for rice, flour, and coffee products, as
well as for the entire set of food-at-home product categories in the NielsenIQ data over
the period 2006–2020. Since these specifications do not require information on input costs,
they allow us to the test for pass-through in levels at the retail level for a much broader
set of products: the latter dataset contains nearly one million unique UPCs sold across
235 retail chains.

15Table 6 assumes that the cost of a UPC is uniform across retailers. If retailers set fixed percentage
markups but also have other, heterogeneous variable costs, i.e., pi = µi(c + wi), then the estimates for βlevel

and βlog would move toward 0 and −1, but would not fully reach the “additive markup” predictions unless
prices were perfectly competitive (i.e., the percentage markups µi = 1).
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Table 7: Exploiting variation in prices of identical products across retailers.

Panel A: In levels ∆ UPC Price (∆pikt)
Rice Flour Coffee All Products
(1) (2) (3) (4)

Avg ∆ Pricekt × RelativePriceikt −0.022 0.058 0.192 −0.001
(0.141) (0.209) (0.170) (0.839)

UPC-Quarter FEs Yes Yes Yes Yes
N (millions) 0.399 0.101 1.570 100.4
R2 0.46 0.48 0.51 0.59
Within-R2 0.04 0.07 0.10 0.00

Panel B: In logs ∆ Log UPC Price (∆ log pikt)
Rice Flour Coffee All Products
(1) (2) (3) (4)

Avg ∆ Log Pricekt × RelativePriceikt −1.004** −1.014** −1.261** −1.043**
(0.125) (0.184) (0.084) (0.073)

UPC-Quarter FEs Yes Yes Yes Yes
N (millions) 0.399 0.101 1.570 100.4
R2 0.62 0.61 0.58 0.61
Within-R2 0.13 0.14 0.16 0.12

Note: Panel A reports results from (9), and panel B reports results from (10). RelativePriceikt is the log
deviation in the price set by retailer i for UPC k in quarter t compared to the average price set by retailers,
log(pikt/p̄kt). Regressions weighted by sales. Driscoll-Kraay standard errors. ** indicates significance at 5%.

Panel A of Table 7 shows that estimating the levels specification (9) yields βlevel
≈ 0

across each of the three product categories and for the entire dataset. That is, retailers
selling the same UPC have similar price changes in levels when the cost of a UPC changes.
Note that if retailers had fixed percentage markups, Table 6 predicts an interaction coeffi-
cient of one. For each of the individual product categories (though not for the dataset as
a whole), we can in fact reject the hypothesis that βlevel = 1 at the 5 percent level.

Panel B likewise reports the results from the log specification (10). We find that
βlog
≈ −1 in each of the three product categories and for the broader NielsenIQ dataset.

In all cases, we can reject the hypothesis of fixed percentage markups (i.e., βlog = 0) at
the 5 percent level. Thus, results from both specifications suggest that retailers exhibit
complete pass-through in levels across a broad array of product categories.16

16This finding may be surprising in the light of Eichenbaum, Jaimovich, and Rebelo (2011), who find that
when a retailer resets its reference price, the deviation in the realized markup from the average markup is
largely uncorrelated with the deviation in the hypothetical markup absent a price reset from the average
markup (Eichenbaum et al. 2011, Figure 8). However, this evidence is not necessarily inconsistent with
our results. Fixed additive markups imply that the deviation in the realized percentage markup from the
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5 Evidence from Manufacturing Industries

So far, we have documented pass-through in levels using microdata for specific goods. In
this section, we extend our analysis to a panel of industries that span the U.S. manufac-
turing sector. We find that the pass-through of input cost changes to output prices across
this broader sample of industries conforms with the predictions of pass-through in levels.

5.1 Data and Empirical Approach

Data on manufacturing industries. We use the NBER-CES Manufacturing Industry
Database (Becker, Gray, and Marvakov 2021), which contains data on industry sales,
costs, output price indices, and input price indices for 459 four-digit SIC industries from
1958–2018. Industry shipments, materials costs, costs of fuels and electricity, and pro-
duction worker wages in the database are drawn from the Census’s Annual Survey of
Manufacturers and the Census of Manufacturers. Output price indices are constructed
by linking each industry to producer price data from the BLS Producer Price Index (PPI)
program. Material input price indices are constructed by matching each industry to PPI
data for its inputs, using the BEA’s quinquennial detail input-output tables. Energy price
indices for each industry are constructed using direct data on electricity usage costs and
by combining Manufacturing Energy Consumption Survey data on the composition of
fuel sources used by each industry with BLS PPI commodity data.

Testing for pass-through in levels. Unlike our earlier analysis of gasoline and food
products, where we observed the level of input and output prices for specific products,
the NBER-CES data include output and input price indices that reflect average percentage
changes in prices. Nevertheless, we can estimate the pass-through in levels using changes
in log price indices and the revenue-share of input expenditures.

Denote the pass-through in levels of a change in input costs to prices by ρlevel
≡ ∆p/∆c.

Rearranging yields
∆p
p
= ρlevel cy

py
∆c
c
.

While we don’t directly observe price levels or changes in price levels, to a first order, the
ratio of the price change to the price level is equal to the change in the log price index,

average is negatively correlated with the deviation in cost from average cost, but when costs are close to
unit root, the deviation in cost from average cost may have a low correlation with the change in cost since
the last reference price reset.
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∆p/p ≈ ∆ log p. Thus, to a first order approximation,

∆ log p ≈ ρlevel

(
cy
py

)
∆ log c. (11)

Note that under the assumption of constant returns, Leontief production, the term in
parentheses (cy/py) is simply the ratio of expenditures on the input to total sales.

Thus, we can test for pass-through in levels by estimating how changes in each indus-
try’s output price index relate to changes in its input price index multiplied by the revenue
share of input costs. If firms exhibit complete pass-through in levels, changes in the output
price index should move one-for-one with changes in the input price index multiplied by
the revenue share of inputs. On the other hand, if firms have fixed percentage markups,
the estimated pass-through in levels ρlevel will be greater than one.

5.2 Empirical Results

Pass-through in levels across manufacturing industries. We implement (11) by esti-
mating the specification,

∆ log pit = ρ
level (∆ log cit × (InputCosts/Sales)it−1

)
+ δ∆ log cit + γ(InputCosts/Sales)it−1 + αi + ϕt + εit, (12)

where ∆ log pit (∆ log cit) is the change in the log output (input) price index of industry i
from year t−1 to t, InputCosts/Salesit−1 is industry i’s revenue-share of input expenditures
in year t− 1, and αi and ϕt are industry and year fixed effects. Assuming constant returns,
Leontief production, (11) shows that the coefficient on the interaction term ρlevel identifies
the pass-through in levels of the input cost change to output prices. Equation (11) also
predicts that δ = γ = 0, but we do not impose these restrictions for estimation.

Table 8 presents the results from estimating (12) in the panel of manufacturing indus-
tries. In columns 1–2, we define input costs as each industry’s materials costs. Column 1
shows that a 1 percent increase in the materials input price index for an industry is asso-
ciated with a 0.69 percent increase in output prices. That is, industries exhibit incomplete
log pass-through of materials input costs. Column 2 uses specification (12) to estimate
the pass-through in levels. We find that the estimated coefficient on the interaction term
ρlevel

≈ 1, consistent with complete pass-through in levels. In other words, the incomplete
log pass-through in column 1 appears to be explained by complete pass-through in levels
in our panel of manufacturing industries.
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Table 8: Pass-through for manufacturing industries.

∆ Log Output Pricet
Inputs: Materials + Energy + Production Labor

(1) (2) (3) (4) (5) (6)

∆ Log Input Pricet 0.690** 0.079 0.704** 0.005 0.796** 0.052
(0.072) (0.132) (0.073) (0.134) (0.083) (0.232)

(InputCost/Sales)t−1 0.004 0.008 0.023**
(0.011) (0.011) (0.011)

∆ Log Input Pricet × (InputCost/Sales)t−1 0.947** 1.041** 0.984**
(0.203) (0.201) (0.286)

Industry FEs Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes
N 27 381 27 381 27 381 27 381 27 381 27 381
R2 0.40 0.42 0.40 0.42 0.41 0.42

Note: Columns 1–2 use input costs and prices for materials, columns 3–4 use input costs and prices for
materials plus energy, and columns 5–6 use input costs and prices for materials, energy, and production
labor. Input price inflation is an expenditure-weighted average across components of cost. Input and
output price indices are deflated using CPI excluding food and energy. Standard errors two-way clustered
by industry and year. ** indicates significance at 5%.

Columns 3–6 find similar results when we extend our definition of inputs to include
energy and production labor. In each case, we construct the change in the input price index
as the weighted average of changes in price indices for each input, using the industry’s
expenditures on each input in the prior year as weights. We use the average hourly
earnings of production and nonsupervisory employees in manufacturing as the price
index for production labor across all industries to ensure that the labor price index is not
biased by rent-sharing of profits with employees. In all cases, we find that the estimated
coefficient on the interaction term β is very close to one, consistent with complete pass-
through in levels of input cost changes to prices.17

Robustness. One might be concerned that our estimates of the pass-through of input
price movements to industry output prices are attenuated by reverse causality, since
demand shocks downstream of an industry could propagate upward from output prices
to input prices. To address this concern, we estimate (12) using an instrumental variable
approach. We use a decomposition of commodity price movements into demand shocks,

17When estimating (12) in Table 8, we deflate both input and output price indices by changes in the
consumer price index. This choice anticipates Section 7, where we show that additive markups may be
priced relative to the price level in the economy. Estimating (12) using changes in nominal input and output
prices does not meaningfully change the results in Table 8, but we show in Section 8.3 that it can affect the
estimated pass-through across specific categories of inputs.
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industry productivity shocks, and commodity market shocks from Kabundi and Zahid
(2023). By construction, the commodity market shocks they measure are orthogonal to
aggregate demand shocks and downstream industry productivity shocks, so we use these
commodity price shocks interacted with industry fixed effects as instruments for changes
in each industry’s input prices. Appendix Table A10 reports that the estimated coefficient
β remains close to one using this instrumental variable approach.

A second concern is that nominal price rigidities may lead us to underestimate the
long-run pass-through of input price changes to output prices. In Appendix Table A11,
we estimate (12) using changes in input and output prices at horizons ranging from one
to five years. If anything, our estimate of β slightly declines with the horizon, and we
cannot reject the hypothesis that β = 1 for any horizon.

6 Discussion

Taking stock. Complete pass-through in levels emerges across a broad set of industries
and markets. To recap, we find complete pass-through in levels in retail gasoline markets,
from commodity costs to retail prices in food product markets, at the retail level across
the universe of food-at-home products in NielsenIQ data, and across industries spanning
the U.S. manufacturing sector. Moreover, across these settings, we find that pass-through
in levels accounts for the extent of incomplete log pass-through and the heterogeneity in
log pass-through observed across products, across firms, and across industries.

Our findings are best understood as reflecting the long-run pass-through of industry-
wide, persistent cost changes. First, the cost shocks that we study are input price changes
that affect all producers in a market. That is, our estimates capture the response of prices to
industry-wide, or “common,” cost shocks, rather than idiosyncratic cost shocks that only
affect one or a subset of producers in a market. Second, input prices in each of the markets
we study are close to unit root (see Appendix Table A2), meaning that input cost changes
are highly persistent. In the remainder of the paper, we will focus on explaining why
firms pass through persistent, common cost shocks in levels, allowing for the possibility
that the pass-through in levels of an idiosyncratic or temporary cost shock could differ.

Comparison to previous estimates. In Appendix Table A1, we survey previous studies
that measure pass-through in levels and logs. Given the vast literature on pass-through,
we focus on papers that study the pass-through of industry-wide cost shocks, rather than
idiosyncratic shocks, and that measure pass-through using reduced form methods, rather
than simulating pass-through using a structural model.
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The majority of studies that measure pass-through in levels in Appendix Table A1
are unable to reject complete pass-through in levels, and point estimates in many of the
studies are tightly estimated around one. These studies span an array of industries and,
in addition to commodity and input cost changes, consider other types of cost shocks such
as excise tax changes and shipping costs.

A few exceptions to complete pass-through in levels in Appendix Table A1 find ev-
idence of under- or over-shifting of excise tax changes (e.g., Kenkel 2005; Hanson and
Sullivan 2009; Cawley, Frisvold, Hill, and Jones 2020; and Conlon and Rao 2020). Our
impression is that some of these exceptions may owe to shocks that are small in magnitude
or small samples of excise tax changes. For example, Conlon and Rao (2020) propose that
over-shifting may not be due to fixed percentage markups, but instead to retailers round-
ing up to prices that end in 99 cents even when tax changes are small. Indeed, of the three
tax changes in their sample, only one increases taxes per product by more than $1, and for
that tax change Conlon and Rao (2020) find that pass-through in levels is slightly below
and not significantly different from one. Likewise, pass-through estimates from Kenkel
(2005), Hanson and Sullivan (2009), and Cawley et al. (2020) each come from studying a
single tax change event. Butters et al. (2022) recently revisit the pass-through of excise tax
changes using a larger sample of sixty-eight national and state excise tax changes. In this
larger sample, Butters et al. (2022) estimate a pass-through in levels of 1.01 (standard er-
ror: 0.02).18 Thus, evidence from studies that measure pass-through over a larger sample
of excise tax changes or that use commodity and input price shocks—which offer more
continuous variation for identification—points toward complete pass-through in levels.

7 Explaining Pass-Through in Levels

In this section, we characterize restrictions on demand that lead firms to pass through cost
shocks in levels. We show that complete pass-through in levels requires that demand be
shift invariant with respect to the prices of goods exposed to the cost shock. This restriction
is violated by homothetic demand systems used in workhorse macroeconomic models,
which are instead scale invariant with respect to prices. We identify an alternate class of
demand systems that exhibit shift invariance and thus generate complete pass-through in
levels.

18For some sub-samples, the estimates from Butters et al. (2022) vary more widely. For example, their
estimates of pass-through for beer, liquor, and sugar-sweetened beverage taxes range from 0.72–1.42, but
these estimates are from only 2–4 tax change events, compared to 68 excise tax changes in their full sample.
The variability of these sub-sample estimates underscores the high variance in pass-through estimates that
can arise from a small sample of tax changes.
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7.1 Environment

Suppose there is a set of goods that is partitioned into a set of J ≥ 1 inside goods and K ≥ 0
outside goods. Denote the vector of prices for inside goods by p = (p1, ..., pJ) and the vector
of prices for outside goods by p0. The demand system D(p,p0,Y) describes the quantity
consumed of each good as a function of the prices of inside goods p, the prices of outside
goods p0, and income Y.

Each inside good is produced and sold by a single firm. For j ∈ {1, ..., J}, firm j possesses
a constant returns to scale production function with exogenous marginal cost c j. As in
standard models, we assume that each firm sets its price p j to maximize profits, taking the
prices set by other firms and consumer demand curves as given.

Assumption 1 (Nash-in-prices). For each j ∈ {1, ..., J}, the price p j is set to maximize firm
j’s profits, taking all other prices and the demand system D as given.

Given an exogenous vector of outside prices p0, income Y, and vector of marginal costs
c = (c1, ..., cJ), an equilibrium is a vector of prices p and quantities q such that, for j = 1, ..., J,
q j = D j(p,p0,Y) and p j maximizes the profits of firm j taking all other prices as given.

We will be interested in the pass-through of a change in the costs of producing the
inside goods, starting from an initial equilibrium. For all results that follow, we impose
Assumption 2, which guarantees that such an equilibrium exists and that firm’s residual
demand curves are downward-sloping in this initial equilibrium.

Assumption 2 (Equilibrium existence and downward-sloping demand). Given outside
prices p0, income Y, and marginal costs c, (1) an equilibrium exists, and (2) own-price
elasticities of demand for each inside good ∂ log D j/∂ log p j are strictly negative and finite.

The assumption of finite elasticities of demand precludes perfect competition, in which
firms face perfectly elastic residual demand curves. Of course, under perfect competition,
firms’ prices equal marginal costs and thus changes in marginal cost are passed through
one-for-one in levels to prices. However, several other features of the markets that we
study are at odds with perfect competition: these industries exhibit price dispersion for
identical products, prices that are elevated over available measures of costs, and small
and finite demand elasticities. Thus, we will seek to characterize restrictions on demand
that yield pass-through in levels in such environments with imperfect competition.

7.2 Scale Invariance, Shift Invariance, and Pass-Through

We define the following properties of the demand system.
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Definition 1 (Scale invariance). D(p,p0,Y) is scale invariant in p if there exist functions
φ1, ..., φJ such that ∂φ j/∂p j = 0 for all j and, for any positive constant λ,

D j
(
λp,p0,Y

)
= λφ j(p,p0,Y,λ) D j

(
p,p0,Y

)
for all j ∈ {1, ..., J}.

Definition 2 (Shift invariance). D(p,p0,Y) is shift invariant in p if there exist functions
ψ1, ..., ψJ such that ∂ψ j/∂p j = 0 for all j and, for any constant λ,

D j
(
p + λ1,p0,Y

)
=

(
1 + λψ j(p,p0,Y, λ)

)
D j

(
p,p0,Y

)
for all j ∈ {1, ..., J},

where 1 = (1, ..., 1) is a J-length vector of ones.

Scale and shift invariance are restrictions on how changes to the prices of all inside
goods affect demand. Scale invariance imposes that, if the price of every inside good is
multiplied by the same factor, the quantity demanded of each good changes by a factor
that does not depend on the good’s own price. Thus, a proportional price change to
all inside goods leaves the elasticities of the residual demand curves facing each firm
unchanged. Shift invariance instead restricts how the quantity demanded of each good
changes when the price of each inside good changes by the same absolute amount. Under
shift invariance, a shift in all prices scales the demand schedule facing each firm, so that the
level and slope of the residual demand curve for each firm scale by the same (potentially
firm-specific) factor.

Our main results in Proposition 1 and Proposition 2 show how these properties of
demand determine the pass-through of common cost shocks to prices.

Proposition 1 (Complete log pass-through). Consider a shock that increases the marginal cost
of production for all inside goods proportionally by d log c j = d log c for all j ∈ {1, ..., J}, holding
fixed outside prices p0 and income Y. If demand is scale-invariant in p, then each inside good’s
price increases by d log p j = d log c.

Proof. See Appendix B.2. □

When demand is scale invariant in inside prices, firms exhibit complete log pass-
through of a common (proportional) cost shock. Intuitively, scale invariance implies that
when all firms completely pass through the aggregate cost shock in logs, the elasticities
of demand facing firms are unchanged, and firms have no further motive to change
their percentage markups. Thus, firms exhibit fixed percentage markups when faced by
common, proportional cost shocks.

Analogously, a common (absolute) cost shock to firms is passed through completely
in levels when demand is shift invariant.
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Proposition 2 (Complete pass-through in levels). Consider a shock that increases the marginal
cost of production for all inside goods by dc j = dc for all j ∈ {1, ..., J}, holding fixed outside prices
p0 and income Y. If demand is shift-invariant in p, then each inside good’s price increases by
dp j = dc.

Proof. See Appendix B.2. □

When demand is shift-invariant in inside prices, a uniform absolute increase to inside
goods’ prices scales the demand schedule facing each firm. This scaling means that each
firm’s desired additive markup, which is equal to the ratio of a firm’s demand to the
slope of its residual demand curve, remains unchanged. Thus, firms retain fixed additive
markups in response to a common cost shock.

For the purpose of characterizing pass-through, we have considered two different
types of cost shocks: the first type of cost shock in Proposition 1 increased all firms’ costs
by a fixed proportion, while the second type of cost shock in Proposition 2 increased all
firms’ costs by a fixed amount. One may wonder whether the differences in pass-through
behavior are due to differences in the type of aggregate cost shock. This is not the case:
Proposition 3 shows that a demand system cannot be simultaneously scale invariant and
shift invariant with respect to the same set of prices.

Proposition 3 (Scale and shift invariance are disjoint). If D(p,p0,Y) is scale invariant in p,
then D(p,p0,Y) is not shift invariant in p. (Equivalently, if D(p,p0,Y) is shift invariant in p,
then D(p,p0,Y) is not scale invariant in p.)

Proof. See Appendix B.2. □

Proposition 3 implies that if a set of firms exhibit complete log pass-through of a
common, proportional shock to costs, those firms cannot exhibit complete pass-through
in levels of a common, absolute cost increase. Likewise, if a demand system implies
complete pass-through in levels of a common absolute cost shock to a set of firms, those
firms will not exhibit complete log pass-through of a proportional cost shock.

7.3 Examples of Scale- and Shift-Invariant Demand

We can use these restrictions to explore which models of demand are consistent with
our evidence of complete pass-through in levels. We begin by showing that homothetic
demand systems commonly used in macroeconomics and trade are scale invariant and
thus are inconsistent with our evidence of complete pass-through in levels. We then
identify examples of demand systems that satisfy shift invariance.
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7.3.1 Examples of Scale-Invariant Demand

Many workhorse models in macroeconomics and trade feature homothetic demand sys-
tems. The following example shows that homothetic demand systems are scale invariant
with respect to goods’ prices.

Example 1 (Homothetic preferences). Suppose there are J goods, and a representative
consumer chooses consumption of each good q j to maximize utility U(q1, ..., qJ) subject to
the budget constraint

∑
j p jq j = Y. If U is homothetic, then the quantities q chosen by

the consumer can be represented by a scale-invariant demand system D(p,p0,Y), where
p0 = ∅ and φ j = −1.

Since homothetic demand systems are scale invariant, they predict that firms retain
constant percentage markups in response to aggregate, proportional cost shocks. This re-
sult applies to any homothetic demand system, regardless of whether the demand system
implies fixed percentage markups—as in CES demand—or whether it accommodates vari-
able markups, as in Kimball (1995) or HSA (Matsuyama and Ushchev 2017) preferences.
This result also applies regardless of whether firms are atomistic, as in models of monop-
olistic competition, or granular, as in the Atkeson and Burstein (2008) oligopoly model.
While the latter models can account for incomplete log pass-through of idiosyncratic cost
shocks, they uniformly predict complete log pass-through of aggregate (proportional)
cost shocks due to their scale invariance. Moreover, Proposition 3 implies that since ho-
mothetic demand systems are scale invariant, they are not shift invariant and thus are
inconsistent with our evidence of complete pass-through in levels of common cost shocks.

An analogous result applies to the pass-through of industry-wide cost shocks in models
where preferences are a CES nest over homothetic industry aggregates.

Example 2 (Nested homothetic preferences). Suppose there is a continuum of industries
indexed by n ∈ [0, 1], each of which consists of J firms. A representative consumer
maximizes

U =
(∫ 1

0
Q

σ−1
σ

n dn
) σ
σ−1

s.t.
∫ 1

0

∑
j

pnjqnj dn = Y,

where pnj is the price of firm j in industry n, qnj is the quantity purchased from firm j in
industry n, σ is the elasticity of substitution across industries, Y is the consumer’s income,
and Qn = u(qn1, ..., qnJ) is a homothetic aggregate of consumption from firms in industry n.

Then, for any industry n, the quantities qn = (qn1, ..., qnJ) can be represented by a
demand system D(p,p0,Y), where p = (pn1, ..., pnJ) is the vector of prices for the J firms in
industry n, p0 is the vector of prices of all firms outside industry n, and D(p,p0,Y) is scale
invariant in p with φ j = −σ.
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Example 2 includes the nested CES demand system from Atkeson and Burstein (2008)
and the nested Kimball demand system from Amiti et al. (2019) as special cases. In these
models, demand is scale invariant with respect to the prices of firms in an industry, and
so firms exhibit complete log pass-through of industry-wide (proportional) cost shocks.
Thus, any model of industry demand that can be expressed as a special case of Example 2
will not exhibit complete pass-through in levels of common cost shocks.

7.3.2 Examples of Shift-Invariant Demand

Which demand systems can generate complete pass-through in levels? We first show
that an individual firm exhibits complete pass-through in levels of cost shocks when its
residual demand curve is log-linear, as is the case under logit demand with atomistic
firms. Then, we characterize a broader class of models that satisfy shift invariance and
thus generate complete pass-through in levels of common cost shocks.

Example 3 (Log-linear demand curves). Suppose the demand for good j can be written as

D j

(
p j,p0,Y

)
= exp

(
a j(p0,Y) − b j(p0,Y)p j

)
.

Then D j

(
p j,p0,Y

)
is shift-invariant in p j with ψ j(p0,Y, λ) =

(
exp

(
−b j(p0,Y)λ

)
− 1

)
/λ.

The log-linear functional form means that level changes in a firm’s price scale its
demand curve up or down by a multiplicative factor, thus satisfying shift invariance.
Several previous studies characterizing the pass-through of idiosyncratic cost shocks
based on the shape of residual demand curves note this special property of log-linear
demand curves (e.g., Bulow and Pfleiderer 1983; Weyl and Fabinger 2013; Mrázová and
Neary 2017). In some of this previous work, this special property of log-linear demand
is expressed in terms of the “super-elasticity” of demand: under log-linear demand, the
elasticity of demand is proportional to price, −∂ log D j/∂ log p j = p jb j(p0,Y), so that the
super-elasticity is equal to one.

A popular special case of Example 3 is logit demand with atomistic firms.

Example 4 (Logit demand with atomistic firms). Suppose there are a continuum of goods
indexed by j ∈ [1, J] and an outside good with price p0, and that the demand for good
j ∈ [1, J] is given by

D j(p, p0,Y) =
exp(a j(p0,Y) − bp j/p0)∫ J

1
exp(ak(p0,Y) − bpk/p0)dk

, (13)

where p is a vector of prices of goods j ∈ [1, J] and b is a positive constant. Then, demand
is shift invariant with respect to any vector of prices psubset

⊆ p.
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When firms are atomistic, the influence of firm j’s own price on the denominator in (13)
becomes vanishingly small, and hence logit demand becomes a special case of Example 3.
Under this demand system, the price set by firm j is equal to its marginal cost plus an
additive markup priced relative to the outside good,

p j = c j +
p0

b
.

Thus, logit demand with atomistic firms yields complete pass-through in levels of any
cost shock to inside firms, whether that shock is idiosyncratic to firm j, affects a subset of
firms, or affects all inside firms [1, J].

Log-linear demand curves and logit demand are functional forms that yield complete
pass-through in levels of idiosyncratic shocks. However, a much broader class of demand
systems satisfies shift invariance with respect to a set of firms’ prices and thus generates
complete pass-through in levels of common cost shocks, as we show in Example 5.

Example 5 (Discrete choice with quasilinear preferences). Suppose there is a unit mass
of consumers indexed by i ∈ [0, 1], each with income Y. There are J inside goods and a
single outside good (“the numeraire”). Each consumer purchases one unit of one of the
J inside goods and spends the rest of her income on the numeraire. Consumer i’s utility
maximization problem is:

Ui = max
j
{ui j} s.t.

 ui j = δi j + qi0 (Utility)
p j + p0qi0 = Y (Budget constraint)

where p0 is the price of the numeraire, qi0 are units purchased of the numeraire, and δi j are
consumer-specific tastes for each inside good. Assume further that consumers almost-
surely do not face ties in utility between goods (i.e., for any two goods j,n where j , n,
the set of consumers where aδi j − bδin = c for any positive constants a, b > 0 and for any
constant c is measure zero).

Then, the demand system D(p, p0,Y) given by aggregating over all consumers, so that

D j(p, p0,Y) =
∫ 1

0
1{ui j > uik for all k , j} di,

is shift-invariant in p with ψ j = 0.

The class of discrete choice demand system in Example 5 is a special case of shift
invariance where a common cost shock leaves firms’ demand curves entirely unchanged
(i.e., ψ j = 0). This class of demand systems is sometimes referred to as translation-
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invariant choice systems (McFadden 1981) or linear random utility models (Anderson
et al. 1992). Anderson et al. (1992) show that this class nests several demand systems
used in the industrial organization literature as special cases. For example, logit, nested
logit (Verboven 1996), mixed logit (Nevo 2001), multinomial probit, competition on a line
(Hotelling 1929), and competition on a unit circle (Salop 1979) can all be expressed in
terms of the framework above.19 Thus, each of those demand systems is shift invariant
with respect to inside prices and generates complete pass-through in levels of common
cost shocks.

7.4 Discussion

We have shown that demand systems that satisfy shift invariance lead firms to exhibit
complete pass-through in levels of common cost shocks. While the homothetic demand
systems commonly used in macroeconomics and trade do not satisfy this property, a va-
riety of alternative demand systems, including several from the industrial organization
literature, satisfy this property. This class of demand systems also encompasses differ-
ent micro-foundations and allows for ample flexibility in matching firms’ elasticities of
demand and substitution patterns.

We discuss a few features of the demand systems that generate complete pass-through
in levels, as well as other mechanisms that may explain pass-through in levels.

Pass-through of idiosyncratic cost shocks. A demand system may be shift invariant
with respect to the prices of a set of firms without being shift invariant with respect
to firms’ individual prices. Thus, one can choose a demand system that matches our
evidence on complete pass-through in levels of common cost shocks while retaining the
flexibility to match different rates of pass-through for idiosyncratic shocks.

To date, there is less evidence on the pass-through in levels of idiosyncratic cost shocks.
A recent exception is Alvarez, Cavallo, MacKay, and Mengano (2024), who measure pass-
through of cost shocks by a non-durables manufacturer and find complete pass-through
in levels of both aggregate and idiosyncratic shocks. Logit demand with atomistic firms
is a special case that predicts complete pass-through in levels of both aggregate and
idiosyncratic shocks, as shown in Example 4.

19Barro (2024) characterizes firms’ markups in a variant of the Salop (1979) model with an intensive
margin elasticity of demand. When the intensive margin elasticity of demand in his model is zero, his
model coincides with a special case of Example 5. For this case, Barro (2024) shows that firms have additive
markups and exhibit complete pass-through in levels, consistent with Proposition 2.
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Neutrality. Likewise, a demand system can be shift invariant with respect to the prices
of a set of firms while being scale invariant with respect to a broader set of prices in
the economy. Take the demand systems in Example 5. These demand systems are shift
invariant in the vector of inside prices p, so that common cost shocks are passed through
one-for-one in levels. But, they also satisfy the property that, for any positive constant
λ, D j(λp, λp0,Y) = D j(p, p0,Y) for all j ∈ 1, ..., J. This means that a shock to the aggregate
price level that scales both costs of production and the numeraire price p0 leads to a
proportional change in firms’ prices (i.e., no change in firms’ percentage markups). Thus,
models that exhibit pass-through in levels of industry-wide cost shocks can also preserve
the neutrality of relative prices and quantities to changes in the aggregate price level.

Evidence on quantities. Scale-invariant and shift-invariant demand systems have dif-
ferent predictions for how a uniform level price increase across firms affects relative
quantities demanded. When demand is homothetic, the uniform absolute price increase
represents a larger proportional price increase for low-price products, which should re-
sult in a reallocation of quantities away from low-price products and toward higher-price
products.20 Meanwhile, several models that satisfy shift invariance do not make this
prediction: for example, in the family of demand systems given in Example 5, a uniform
shift in firms’ prices has no effect on quantity shares across firms.

We test how quantity shares of low- and high-priced rice, flour, and coffee products
respond to changes in commodity prices in Appendix Table A13. We find no effect on
quantity shares of low- vs. high-priced rice and flour products in response to commodity
cost changes; for coffee products, we observe if anything a reallocation toward low-price
products when commodity costs rise, in contrast with the predictions of homothetic de-
mand. Thus, the response of quantities demanded to commodity cost changes provides
complementary evidence that matching the data requires deviating from workhorse ho-
mothetic models of demand.

Other explanations for pass-through in levels. Demand systems that satisfy shift in-
variance generate complete pass-through in levels without modifying core assumptions
about firm conduct, firm and consumer rationality, or firm objectives. Of course, it may
be possible to explain pass-through in levels by instead relaxing these assumptions. For
example, strategic interactions between oligopolistic firms can generate kinked demand
curves or price cycles that break the standard relationship between markups and demand

20Baqaee, Farhi, and Sangani (2024) explore an example with homothetic (Kimball 1995) preferences
where higher log pass-through for low-markup firms leads to a reallocation of resources away from low-
markup firms and toward high-markup firms.
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elasticities (e.g., Maskin and Tirole 1988). Fairness or implicit contracts between firms and
customers may lead firms to only increase prices when costs visibly increase (e.g., Okun
1981; Rotemberg 2005; Westphal 2024). Finally, prices may reflect heuristics such as “full
cost pricing” or “target returns pricing” (Hall and Hitch 1939; Lanzillotti 1958; Blinder
1994) or firm objectives beyond profit maximization (e.g., Baumol’s 1959 conjecture that
firms maximize revenue subject to a profit constraint). Our empirical evidence on pass-
through in levels across several markets is also useful for disciplining these alternative
explanations.

8 Implications

We propose that demand systems that generate pass-through in levels can be useful in
understanding several features of the data. In this section, we first discuss the implica-
tions of pass-through in levels for pass-through measurement, and then discuss broader
implications that arise from integrating demand systems that generate pass-through in
levels into popular macroeconomic models.

8.1 Pass-Through Measurement

When firms exhibit complete pass-through in levels, Proposition 4 shows that using a
log specification to measure pass-through can lead to asymmetry, size-dependence, and
systematic heterogeneity in pass-through across firms.

Proposition 4 (Asymmetry, size-dependence, and heterogeneity). Suppose D(p,p0,Y) is
shift invariant in p, and denote the initial markup of firm j by µ j = p j/c j. In response to a common
cost shock, the log pass-through of firm j to a first order in ∆ log c j is

ρlog
j =

∆ log p j

∆ log c j
≈

1
µ j

[
1 +

1
2
µ j − 1
µ j
∆ log c j

]
.

Let ρlog
j (·) denote log pass-through as a function of the log cost change ∆ log c j. Then,

1. Log pass-through is asymmetric: ρlog
j (x) > ρlog

j (−x) for any x > 0.

2. Log pass-through is size-dependent: ρlog
j (x) > ρlog

j (x′) for any x > x′.

3. Log pass-through is decreasing in markups: ∂ρlog
j /∂µ j < 0 for small ∆ log c j.

Proof. Results follow from a second-order expansion of dp j = dc with respect to∆ log c j. □
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A large literature documents asymmetries in log pass-through (see e.g., Peltzman
2000), and recent work suggests that firms pass through large shocks at higher rates
than small shocks (Cavallo, Lippi, and Miyahara 2024; Gagliardone, Gertler, Lenzu, and
Tielens 2025).21 Although these patterns could arise from genuine differences in how
firms respond to cost changes, Proposition 4 shows that using a log specification naturally
generates such asymmetry and size-dependence. With complete pass-through in levels,
these effects arise because log pass-through is not a stable statistic and depends on the
size and direction of cost shocks.

Measuring pass-through in logs can also lead to systematic patterns of heterogeneity.
Previous work documents that log pass-through tends to decline with firm size (e.g.,
Berman, Martin, and Mayer 2012; Amiti et al. 2019; Gupta 2020) and with product quality
(Chen and Juvenal 2016; Auer, Chaney, and Sauré 2018). Complete pass-through in levels
naturally generates both patterns if markups increase with firm size and product quality,
as is suggested by a large body of empirical work.22

8.2 Dynamics of Industry Profits, Margins, and Entry

Standard models of industry dynamics in macroeconomics and trade assume monopolistic
competition with homothetic demand. We explore how the predictions of such a model
change when we substitute homothetic demand for a demand system that exhibits shift
invariance and thus generates complete pass-through in levels. This change alters the
model’s predictions for how fluctuations in input costs affect gross margins, operating
margins, and firm entry. In the data, the dynamics of these industry aggregates across a
range of industries line up with the predictions of the model with shift-invariant demand.

Profits, margins, and entry in a simple industry model. We consider a workhorse model
of monopolistic competition, following Dixit and Stiglitz (1977) and Melitz (2003). An
industry consists of a mass N of symmetric firms that produce varieties of an output good
with a constant marginal cost c. The demand for any individual firm j, denoted D j(p,p0,Y),
depends on the vector of prices set by all firms in the industry p, an exogenous vector
of outside prices p0, and consumer income Y. We consider the cases where D(p,p0,Y) is

21These studies focus on differences in the extensive margin of price adjustment to small vs. large shocks,
but Gagliardone et al. (2025) also find evidence of greater responsiveness conditional on a price change.

22See Melitz (2018) on firm size and markups and e.g., Atkin, Chaudhry, Chaudry, Khandelwal, and
Verhoogen (2015) and Sangani (2022) on product quality and markups. We caution that some of the existing
evidence on heterogeneity in log pass-through is identified using idiosyncratic shocks. As discussed in
Section 7, our evidence on pass-through comes from industry-wide cost shocks, and demand systems that
yield pass-through in levels of common shocks need not do so for idiosyncratic shocks.
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either scale invariant in p, as in standard formulations with homothetic demand, or shift
invariant in p, yielding complete pass-through in levels.

Each atomistic firm chooses its price to maximize variable profitsπgross, taking as given
all other firms’ prices. In addition to variable costs of production, firms incur overhead
costs fo, so that operating profits are πop = πgross

− fo. We denote the output price chosen
by firms in the symmetric equilibrium by p.

Aggregate industry demand is Q = p−θ. We assume that aggregate industry demand is
inelastic (θ < 1), which is the empirically relevant case for most of the industries studied
in this paper.23 Firm symmetry allows us to express industry gross margins (i.e., gross
profits as a percent of sales) and operating margins (i.e., operating profits as a percent of
gross profits) as24

mgross =
πgrossN

pQ
, and mop =

πopN
πgrossN

.

We close the model by specifying how the mass of firms evolves. Two common
approaches are to assume a fixed mass of firms or to assume free entry. We choose a
general condition that nests both as special cases:

N = N0(πop
− fe)ζ,

where fe is the entry cost and ζ ≥ 0 is the elasticity of the mass of firms to per-firm profits.
When ζ = 0, the mass of firms is fixed at N = N0. As ζ approaches infinity, there is free
entry, and firms make zero profits net of the entry cost. Values of ζ ∈ (0,∞) correspond to
intermediate cases where entry responds to changes in operating profits, but not enough
to keep operating profits in line with the entry cost.

Proposition 5 characterizes how industry aggregates—gross margins, operating mar-
gins, and the mass of firms—respond to changes in upstream costs when industry demand
is either scale invariant or shift invariant.

Proposition 5 (Gross margins, operating margins, and entry). Consider an increase in costs
dc > 0. The response of industry gross margins, operating margins, and the mass of firms is
summarized in the following table:

23Elasticities of aggregate demand for retail gasoline in the U.S. are close to zero (Eitches and Crain 2016),
and the USDA estimates elasticities of aggregate demand for flour, rice, and coffee to be 0.07, −0.07, and
−0.12, respectively (Okrent and Alston 2012).

24We define operating margins as the ratio of operating profits to gross profits, rather than sales. This
ratio is sometimes instead referred to as the “operating-profit conversion rate” or “operating efficiency.”
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Gross margins Operating margins Mass of firms
dmgross dmop d log N

Demand is scale invariant in p:
ζ = 0 (Fixed mass) 0 > 0 0
ζ ∈ (0,∞) 0 > 0 > 0
ζ→∞ (Free entry) 0 0 > 0

Demand is shift invariant in p:
ζ = 0 (Fixed mass) < 0 ≤ 0 0
ζ ∈ (0,∞) < 0 ≤ 0 ≤ 0
ζ→∞ (Free entry) < 0 0 ≤ 0

Proof. See Appendix B.3. □

When demand is scale invariant in p, firms have fixed percentage markups in response
to changes in the input cost c. Thus, when costs rise, firms make higher profits on each
unit sold—for example, a firm charging a fixed 10 percent markup makes $0.10 per unit
when unit costs are $1, and $0.20 per unit when unit costs are $2. Since aggregate industry
demand is inelastic, higher per-unit profits lead to higher aggregate profits for firms or
else are dissipated by the entry of new firms. In other words, an increase in input costs
leads to higher operating margins, new firm entry, or both.

In contrast, when demand is shift-invariant, firms have fixed additive markups and
thus fixed per-unit profits. Changes in input costs no longer necessitate changes to
operating profits or the mass of firms in order to maintain equilibrium. Instead, the
industry equilibrium primarily adjusts to rising costs via a decline in gross margins.

Margins and entry in the data. We test the predictions of Proposition 5 using the re-
sponse of gross margins, operating margins, and entry to input cost fluctuations for retail
gasoline stations and manufacturing industries. For retail gas stations, we use data on
gross and operating margins from the Census Annual Retail Trade Survey (ARTS) and
from retail gas station sole proprietorships in the IRS Statistics of Income (SOI).25 Data on
the number of retail gas station firms and establishments in each year comes from two
sources: the Census Business Dynamics Statistics (BDS) and the Census Statistics of U.S.
Businesses (SUSB).

25Sole proprietorships account for one-fifth of U.S. retail gas stations in 2016. We define sales as income
from sales and operations in the SOI. Gross margins are gross profits (sales minus cost of sales) as a percent
of sales. Operating margins are net income minus income from sources other than sales and operations plus
taxes paid, payments of mortgage interest, and other interest on debt, as a percent of gross profits.
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Table 9: Response of gross margins, operating margins, and entry to input price changes.

Panel A: Retail Gasoline ∆ Log Gross Margin ∆ Log Oper. Margin ∆ Log Num. Estabs
Source: ARTS IRS ARTS IRS BDS SUSB

(1) (2) (3) (4) (5) (6)

∆ Log Wholesale Pricet −0.263** −0.291** 0.490 0.125 −0.002 0.001
(0.045) (0.061) (0.328) (0.284) (0.006) (0.007)

N 39 26 15 26 39 24
R2 0.54 0.49 0.20 0.01 0.00 0.00

Panel B: Manufacturing Industries ∆ Log Gross Margin ∆ Log Oper. Margin ∆ Log Num. Estabs
(1) (2) (3) (4) (5) (6)

∆ Log Input Pricet −0.188** 0.154 0.071 −0.086 0.007 −0.028
(0.039) (0.103) (0.048) (0.130) (0.013) (0.044)

∆ Log Input Pricet × Inputs/Salest−1 −0.504** 0.270 0.049
(0.188) (0.221) (0.063)

Industry FEs Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes
N 27 381 27 381 27 305 27 305 18 201 18 201
R2 0.05 0.11 0.02 0.04 0.22 0.23

Note: Panel A presents results for retail gasoline. The wholesale gasoline price is from the EIA, deflated to
constant dollars. ARTS is the Census Annual Retail Trade Survey, IRS are statistics for sole proprietorships,
BDS is the Census Business Dynamics Statistics, and SUSB is the Census Statistics of U.S. Businesses. HAC-
robust standard errors in parentheses. Panel B reports results for manufacturing industries. The input price
is the price index for materials, deflated to constant dollars; Inputs/Sales is the ratio of material costs to
sales; gross margins are sales less material costs as a share of sales; operating margins are sales less material
costs, energy costs, and payroll, as a share of gross profits; and num estabs are counts of establishments
from the Census Business Dynamics Statistics (BDS). Standard errors two-way clustered by industry and
year. ** indicates significance at 5%.

Appendix Figure A11 shows the time series for retail gasoline gross margins, oper-
ating margins, and establishment growth rates. Gross margins exhibit a strong negative
relationship with input prices (gross margins from the Census ARTS and IRS SOI have
correlations with the wholesale gasoline price of −0.94 and −0.74). On the other hand,
operating margins and firm entry appear largely unresponsive to input prices.

We test the relationship between outcome yt and the input price ct using the first-
differences specification:

∆ log yt = α + β∆ log ct + εt. (14)

Panel A of Table 9 reports results from specification (14) using the price of wholesale
gasoline as the measure of input costs and using gross margins, operating margins, and
entry as outcome variables.26 Neither operating margins nor entry significantly increase

26We obtain similar results using crude oil spot prices or nominal rather than deflated wholesale prices.
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Figure 4: Gross margin and input commodity price for two food manufacturing industries.
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(a) Roasted coffee manufacturing vs. coffee com-
modity price.
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(b) Bread, cake & related products manufactur-
ing vs. wheat commodity price.

Note: Gross margins are sales minus costs of goods sold as a share of sales, from the NBER-CES manufac-
turing database. Annual coffee and wheat commodity prices from 1960–2018 are from the UN Trade and
Development (UNCTAD) data hub, deflated using the CPI excluding food and energy.

with input costs, as predicted by the model with scale-invariant demand. Instead, rising
input prices lead to a significant decline in gross margins, as predicted by the model with
shift-invariant demand and complete pass-through in levels.

Similar patterns emerge for manufacturing industries. Figure 4 plots industry gross
margins against commodity costs for two manufacturing industries that use coffee and
wheat as inputs. As predicted by the model with pass-through in levels, gross margins
exhibit a strong negative correlation with input prices. Panel B of Table 9 reports how
margins and firm entry respond to changes in input prices for the full set of manufacturing
industries in the NBER-CES database. The response of all three industry aggregates to
input costs is consistent with the predictions of shift-invariant demand in Proposition 5:
gross margins exhibit a strong negative response to input price increases, while operating
margins and entry show no significant response. Moreover, we find that the response
of gross margins to input price changes scales with the revenue share of input costs,
consistent with the predictions of shift-invariant demand.

Thus, altering the demand system to match complete pass-through in levels reconciles
the model’s predictions with how industry aggregates respond to input cost fluctuations
in the data. Beyond providing corroborating evidence for shift-invariant demand systems,
these results show that pass-through in levels is useful for understanding fluctuations in
industry gross margins. Pass-through in levels may help to explain an analogous result
in the exchange rate pass-through literature, where Hellerstein (2008) and Campa and
Goldberg (2010) document that distribution margins as a percent of sales fall when import
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prices rise. These results also clarify how industry equilibrium clears after input cost
shocks: while standard models rely on waves of entry and exit to maintain a zero-profit
equilibrium, the modified model with pass-through in levels achieves equilibrium with
less volatility in the number of firms or operating profits.

8.3 Okun’s (1981) “Special Role of Materials Costs”

In Prices and Quantities, Okun (1981) suggests a “special role for materials costs,” specu-
lating that firms may pass-through materials costs differently than labor costs:

Some views of marking up direct costs distinguish increases in the costs of
purchased materials from increases in standard unit labor costs, implying that
the former are likely to be passed through to customers essentially on a dollars-
and-cents basis, while the latter are passed through with a percentage markup.

Okun’s observations are difficult to explain in a rational model of firm behavior. Why
should a cost-minimizing firm treat one component of costs differently from others? And
why should materials costs in particular exhibit this special quality?27

In this section, we suggest that demand systems that generate pass-through in levels
can resolve these puzzles. We develop a simple extension of Example 5 in which firms
produce varieties using materials and labor, and households consume these varieties
alongside an outside good that is produced with labor. In this model, firms set additive
markups consistent with pass-through in levels, but those additive markups are priced
relative to the price of the outside good. As a result, firms appear to pass through changes
in unit labor costs at a higher rate than material costs, because changes in the price of
labor affect both costs of production and firms’ additive markups.

We then show that this model can explain the pass-through of labor and materials
costs in the data. Manufacturing industries indeed appear to pass through labor costs
at a higher rate than material costs. However, the pass-through of energy costs behaves
more like materials than labor, suggesting a “special role for labor” rather than the special
role for materials proposed by Okun (1981). Moreover, once we adjust the measurement
of pass-through as suggested by the model, we restore complete pass-through in levels
across all inputs.

27Okun (1981) makes this observation on the pass-through of material costs as a caveat to his theory
that firms apply “a constant markup over direct costs” (p. 164). While he does not attempt to resolve
this puzzle, he suggests that his own reading of the evidence is that the pass-through of material costs lies
“somewhere in the middle” between dollars-and-cents pass-through and log pass-through. He also notes
that “the percentage markup of material costs would make the price level more volatile cyclically than
would a dollars-and-cents pass-through,” anticipating our exercise in Section 8.4.
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A simple model with differential pass-through. Suppose there are J identical firms
indexed by j = 1, ..., J. Each firm produces a variety using a constant returns, Leontief
production function in materials and labor, so that the variable costs to produce y units of
output are

C(y) =
(
βc + (1 − β)w

)
y,

where β determines the relative weights of materials and labor in production, c is the
(exogenous) price of materials, and w is the (exogenous) wage rate. Each firm sets its price
to maximize profits, taking as given the prices set by all other firms.

In addition to these J varieties, there is an outside good with price p0. The outside
good is produced from labor by a competitive sector, so that the price of the outside good
is p0 = w/A, where A is the productivity of the outside good-producing sector.

Demand follows the discrete choice framework from Example 5: a continuum of
households indexed by i ∈ [0, 1] consume exactly one unit of an inside good from one
of the J firms and spend the rest of their income Y on the outside good. The utility
maximization problem for household i is

Ui = max
j
{ui j} s.t.

 ui j = δi j + qi0 (Utility)
p j + p0qi0 = Y (Budget constraint)

We further impose that tastes δi j are independent draws from a distribution F. Given that
firms j ∈ {1, ..., J} have identical costs and face identical demand curves, in equilibrium
the firms choose a symmetric output price, which we denote p. Denote the corresponding
percentage markup over marginal cost by µ = p/(βc + (1 − β)w).

Given this environment, Proposition 6 characterizes the pass-through of exogenous
changes to the cost of materials c and to wages w.

Proposition 6 (Differential pass-through of material and labor costs). Let ρlevel
c and ρlevel

w

denote the pass-through in levels of an exogenous change to unit materials prices and unit wages,
and let ρlog

c and ρlog
w denote the analogous log pass-throughs.

1. For each input x ∈ {c,w}, these pass-through rates can be measured as

d log p
d log x

= ρlog
x

Costs(x)
C(y)

, and
d log p
d log x

= ρlevel
x

Costs(x)
py

,

where Costs(c) = βcy and Costs(w) = (1 − β)wy are material and labor variable costs.

2. Firms exhibit complete pass-through in levels of materials costs, ρlevel
c = 1 and ρlog

c < 1.
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3. Firms exhibit (more than) complete log pass-through of labor costs, ρlevel
w ≥ µ and ρlog

w ≥ 1.

4. The “adjusted pass-through in levels” of labor costs ρadj
w = 1, where

d log p
d log w

= ρadj
w

Costs(w) + VariableProfits
py

,

and where VariableProfits = py − C(y).

Proof. See Appendix B.4. □

Proposition 6 shows that this simple model can generate different pass-through rates
for material and labor costs, matching the patterns described by Okun (1981): material
costs are passed-through completely in levels, while labor costs are passed-through with a
percentage markup. The central idea is that, while changes in wages affect marginal costs
of production in the same way that changes in materials costs do, changes in wages also
affect the price of the outside good, which in turn affects firms’ desired additive markups.
In terms of the demand system, not only is D(p, p0,Y) shift invariant in p, but also for any
firm j, D j(λp, λp0,Y) = D j(p, p0,Y). This means that scaling both marginal costs and the
outside good price by a fixed factor leads firms to retain fixed percentage markups.28

Proposition 6 also shows how we can correct our measure of the pass-through of labor
costs to account for the special role that the price of labor plays in determining firms’
additive markups. Rather than using the revenue share of labor input costs, Proposition 6
indicates that we should use the revenue share of labor costs plus variable profits. Doing
so takes into account that the price of labor determines the level of firms’ markups and
restores complete pass-through in levels, ρadj

w = 1.

Empirical evidence. We now explore whether this stylized model can explain the pass-
through of labor and material costs in the data. We use the NBER-CES data on manufac-
turing industries from Section 5, since these data record expenditures on both materials
and labor inputs. As in Section 5, we use the average hourly earnings of production
and nonsupervisory employees in manufacturing as the price index for production labor
across all industries, to ensure that the labor price index is not biased by rent-sharing of
profits with employees.29

28The presence of materials costs means that a change in the wage actually results in a larger proportional
change in p0 than in marginal costs, leading to more-than-complete log pass-through of wage changes.

29This is also most consistent with Okun (1981), who reports results from regressing “the price level of
the nonfarm economy [...] to wages in logarithmic form” (p. 163). Okun’s puzzle disappears if we instead
use the ratio of production worker costs to hours as the measure of wages in each industry. However, this
latter measure may also capture changes in the composition of workers or rent-sharing with workers.
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Let us start by exploring whether differences in the pass-through of materials and
labor costs described by Okun (1981) appear in the data. We measure the pass-through
of input cost changes for each input k ∈ {Materials,Energy,Production Labor} to output
price changes using the specifications,

∆ log pit =
∑

k

ρlog
k

( Costsikt−1

VariableCostsit−1
× ∆ log cikt

)
+ αi + ϕt + εit, (15)

∆ log pit =
∑

k

ρlevel
k

(Costsikt−1

Salesit−1
× ∆ log cikt

)
+ αi + ϕt + εit, (16)

where ∆ log pit is the change in the log output price index of industry i from year t− 1 to t,
∆ log cikt is the change in the log input price index of input k used by industry i, Costsikt−1

are the industry’s expenditures on input k in year t − 1, VariableCostsit−1 and Salest−1 are
the total expenditures on variable inputs (materials, energy, and production labor) and
sales for industry i in year t − 1, and αi and ϕt are industry and time fixed effects. The
coefficients ρlog

k and ρlevel
k in specifications (15) and (16) correspond to the pass-through

rates defined in Proposition 6.
An advantage of these data is that we observe energy costs in addition to both material

and labor costs. Energy is a third input category that we can compare with both materials
and labor to check whether differences in pass-through are due to material costs being
“special,” as Okun (1981) conjectured, or due to labor costs playing a special role in
determining firms’ additive markups.

Table 10 column 1, which reports results from (15), finds that while the log pass-
through of materials and energy costs is incomplete, labor costs exhibit complete log
pass-through. The complete log pass-through of labor costs is consistent with Okun’s
conjecture that labor costs are passed-through with a percentage markup. However,
across the three inputs, labor clearly is the “special” case. Column 2, which estimates (16),
finds complete pass-through in levels of both material and energy costs, but estimates that
the pass-through in levels of labor costs is significantly greater than one.

Proposition 6 predicts that we can correct for the special role that labor costs play
in determining firms’ additive markups by replacing the revenue share of labor costs
with the revenue share of labor costs plus variable profits. Indeed, column 3 shows
that correcting the measured pass-through of labor costs in this way restores complete
pass-through in levels of labor costs and the same pass-through in levels across all three
categories of inputs. Thus, the stylized model with pass-through in levels can explain why
material costs and labor costs appear to be passed-through to prices at different rates, as
Okun (1981) conjectured and as we verify in the data. Moreover, the model demonstrates
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Table 10: Revisiting Okun’s (1981) “special role of materials costs.”

∆ Log Output Pricet
(1) (2) (3)

Cost Shares Sales Shares Sales Shares

∆ Log Material Pricet ×Material Sharet−1 0.798** 1.046** 1.049**
(0.085) (0.108) (0.109)

∆ Log Energy Pricet × Energy Sharet−1 0.715** 0.859** 0.997**
(0.271) (0.378) (0.362)

∆ Log Production Waget × Labor Sharet−1 1.070** 2.095**
(0.217) (0.281)

∆ Log Production Waget × (Labor + Variable Profits) Sharet−1 0.951**
(0.209)

p-value, ρmaterial = ρlabor 0.23 0.00 0.65
p-value, ρenergy = ρlabor 0.34 0.02 0.91

Industry FEs Yes Yes Yes
Year FEs Yes Yes Yes
N 27 374 27 374 27 374
R2 0.49 0.50 0.49

Note: Columns 1–2 report estimates from specifications (15) and (16). Column 3 estimates a variant of (16)
replacing the revenue share of labor costs with the revenue share of labor costs plus variable profits. Variable
costs in column 1 are defined as the sum of material, energy, and production labor costs, and variable profits
in column 3 are defined as sales less variable costs. Standard errors two-way clustered by industry and
year. ** indicates significance at 5%.

how one can correct for the special role of labor by accounting for the fact that additive
markups, and thus variable profits, scale with the price of labor.

8.4 Dynamics of Consumer Price Inflation

Finally, we integrate pass-through in levels into an otherwise standard input-output model
of the U.S. economy. The input-output model with pass-through in levels better fits
the volatility of consumer price inflation relative to upstream commodity prices, while
allowing for substantial markups in line with the microeconomic evidence.

Setup. The economy consists of production labor and N goods that are used for con-
sumption or as intermediate inputs in production. We take the wage for production labor
and prices for a subset of goods Nexog

⊂ {1, ...,N} as exogenous. Each remaining good is
produced by an industry that consists of a unit mass of firms indexed by f . Firms in each
industry possess identical production functions, and the cost of producing y units for a
firm in industry i is

Ci(y) = mci
(
p1, ..., pN,w

)
y + wFi,
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where w is the wage rate for labor, p j is the price of good j, mci(·) is the marginal cost of
production, and Fi is an overhead cost paid in units of labor.

The output of industry i is an aggregate of firms’ differentiated varieties in the industry.
We compare two cases. The first case assumes that each industry’s output is a CES
aggregate of firm varieties with an elasticity of substitution σi. This case implies that
demand curves facing firms in each industry are scale invariant with respect to firms’
prices in the industry. In the absence of nominal rigidities, firms’ desired prices equal a
fixed percentage markup times marginal cost,

p∗i f =
σi

σi − 1
mci.

The second case instead assumes that the demand for the variety produced by firm f is
given by the logit demand system

yi f =
exp(−bi pi f/w)∫ 1

0
exp(−bi pig/w) dg

yi, (17)

where yi is total industry output. In the absence of nominal rigidities, these demand curves
imply that firms’ desired prices are equal to marginal cost plus an additive markup that
is priced relative to the wage,

p∗i f = mci +
w
bi
.

As shown in Example 4, these logit demand curves are shift invariant and predict complete
pass-through in levels of marginal cost changes. Logit demand is a tractable special case
for our purposes because, like CES demand, it implies that firms’ desired prices depend
only on their own marginal costs and not the marginal costs or prices of other firms.

We model nominal rigidities as Calvo (1983) frictions. In each period, only a fraction
of firms δi in each sector are able to change their prices. In the presence of these nominal
rigidities, the optimal reset price for firm f in industry i at time t is

pi f t = arg maxp

∞∑
k=0

βk(1 − δi)k(p −mcit+k)yi f t+k(p),

where yi f t+k(p) is the demand for the firm at time t+ k with output price p, taking as given
the prices set by all other firms.

Finally, we include a retail sector that produces a consumption good using a constant-
returns production function over the N goods. We define the consumer price index as the
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price of a unit of output from the retail sector.

Calibration. We calibrate a log-linearized version of the model. The set of goods includes
the 402 industries in the Bureau of Economic Analysis’s (BEA) detailed input-output tables.
We define the set of goods with exogenous pricesNexog as “Stage 1” industries designated
by the BLS.30 Data on price indices for these goods, pexog

it , are from the BLS Producer Price
Index (PPI) program. We use code from Rubbo (2023) to fill in missing PPI data from 1982–
2018 using a Lasso regression of PPI data on components of the personal consumption
expenditures (PCE) price index. We take the average hourly earnings of production and
nonsupervisory employees as our measure of production wages.

For industries with endogenous prices, the log-deviation in each industry’s marginal
costs relative to steady-state at time t is given by

d log mcit =
∑

j

Ωi jd log p jt, (18)

where Ωi j is the steady-state share of sector i’s variable costs spent on good j. For our
baseline results, we take these expenditure shares from the 2012 BEA tables.31 Likewise,
for the retail sector’s expenditures across industries, we use personal consumption ex-
penditures by industry from the BEA. For Calvo frictions in each industry, we use data on
monthly frequencies of price adjustment by industry from Pasten, Schoenle, and Weber
(2020), who compute these probabilities of price adjustment using the firm-level data that
underlies the BLS PPI.32

For the model with percentage markups, we consider three definitions of variable costs:
(1) materials costs, (2) materials costs and employee compensation, and (3) materials costs,
employee compensation, and consumption of fixed capital. Material costs and employee
compensation are reported in the BEA input-output tables. We compute consumption
of fixed capital by multiplying gross operating surplus for each industry by the ratio of
consumption of fixed capital to gross operating surplus for each industry reported in the
BEA’s components of value added. For each definition of variable costs, we set σi to match
each industry’s ratio of sales to variable costs. For the model with additive markups, we

30The BLS organizes industries into four stages of production flow. Stage 1 identifies industries that are
most upstream from consumer demand. The most recent mapping from BEA industries to BLS stage assign-
ments is from 2012. See https://www.bls.gov/ppi/notices/2021/ppi-updates-to-2012-commodity-
weight-allocations-for-the-final-demand-intermediate-demand-aggregation-structure.htm.

31Around the steady state, (18) describes changes in marginal costs up to a first-order regardless of elas-
ticities of substitution in production. In Appendix Table A14, we report results allowing for the expenditure
shares Ωi j to respond endogenously to prices due to input complementarity.

32We are grateful to Raphael Schoenle for sharing these data.
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Table 11: Volatility of consumer price inflation in calibrated input-output models.

Std. deviation of Cost-weighted
annual inflation, average markup

1982–2018 Mfg. All

Data:
Personal Consumption Expenditures (PCE) Price Index 1.1%
Consumer Price Index for All Urban Consumers 1.3%

Model:
CES demand (percentage markups)

Variable costs (VC) =Materials 2.5% 1.48 2.19
VC =Materials +wages 1.7% 1.19 1.31
VC =Materials +wages + consumption of fixed capital 1.6% 1.11 1.17

Logit demand (additive markups) 1.3% 1.0–1.5 1.0–2.2

Note: The cost-weighted average markup is the ratio of total industry sales to total industry variable costs,
for manufacturing industries (“Mfg.”) and for all industries (“All”).

likewise choose bi in each industry to match gross operating surplus as a share of sales.

Results for inflation volatility. Table 11 reports the volatility of consumer price inflation
in the calibrated model from 1982–2018. The standard deviation of annual inflation rates
in the model with fixed percentage markups, using material costs as the measure of
industry’s variable costs, is 2.5%, nearly double the volatility of consumer price inflation
in the data over the same period. In other words, given the input-output structure of
the economy and the volatility of commodity prices, the model with percentage markups
generates too much volatility in consumer price inflation relative to the data.33

We can reduce the volatility of inflation predicted by the percentage-markup model
by expanding our definition of variable costs. Including wages and all other employee
compensation costs in variable costs reduces the volatility of inflation rates in the model
to 1.7% (still 30–50 percent higher than the data). Further including consumption of fixed
capital reduces the volatility of inflation to 1.6% (20–40 percent higher than the data).

However, reducing the volatility of consumer price inflation in this way implies av-
erage markups that appear too low relative to markups estimated in microdata. The
cost-weighted average markup across industries falls from 2.19 to 1.31 when we include
labor costs, and falls further to 1.17 when we include consumption of fixed capital as part
of variable costs. The implied markups for manufacturing industries are even lower. In

33If we assumed the central bank targets a desired volatility of consumer price inflation, the percentage-
markups model predicts too little volatility in upstream commodity prices relative to the data.
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comparison, De Loecker, Eeckhout, and Unger (2020) estimate a cost-weighted average
markup of 1.25 among public firms and average markups in excess of 1.7 for firms in the
Census of Manufacturing. Estimates of this magnitude are also typical in industry-specific
studies in the industrial organization literature.34

The model with additive markups reconciles this tension between the low volatility
of consumer price inflation and plausibly sized markups. The volatility of consumer
price inflation in the additive-markup model is 1.3%, in line with the volatility of CPI
inflation and modestly larger than the volatility of PCE inflation. Moreover, the model
can accommodate a cost-weighted average markup anywhere between 1.0 and 2.2. While
larger markups in the percentage-markup model amplify the effect of upstream price
movements on downstream prices and inflation, in the additive-markup model, upstream
price movements are passed through in levels regardless of the size of markups.

9 Conclusion

Incomplete log pass-through and adjustment in firms’ percentage markups may be better
understood in terms of complete pass-through in levels and fixed additive markups.
Across a broad array of markets, we find that complete pass-through in levels explains
both the extent of incomplete log pass-through and cross-sectional variation in log pass-
through. Complete pass-through in levels may help to further rationalize other empirical
patterns associated with log pass-through, such as asymmetry, size-dependence, and
systematic patterns of heterogeneity by firm size and product quality.

We show that a restriction on demand that we call shift invariance can lead firms
to exhibit complete pass-through in levels of common cost shocks. While homothetic
demand systems commonly used in macroeconomics and trade are incompatible with
our evidence—they are scale invariant, rather than shift invariant—we identify several
alternative demand systems that accord with complete pass-through in levels.

Integrating these demand systems into workhorse models not only brings the behavior
of prices in those models in line with the data, but also generates new insights. For
example, this paper investigates how doing so in models of industry dynamics and
models with input-output linkages alters the models’ predictions about the dynamics of
industry aggregates and consumer price inflation. These are only a sample of the potential
applications. In a companion paper, we explore how pass-through in levels interacts with

34The relevant statistic for pass-through in the percentage-markup model is the ratio of sales to variable
costs. Studies that find evidence of lower aggregate markups are typically referring to markups as the ratio
of sales to the sum of variable and overhead costs: for example, Gutiérrez and Philippon (2017), who find an
aggregate markup around 1.10, estimate markups as firms’ operating margins less depreciation.
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differences in consumption patterns across the income distribution. Since low-income
households tend to purchase lower-priced products, pass-through in levels generates
cyclical fluctuations in inflation inequality over the commodity cost cycle (Sangani 2025).
We anticipate that pass-through in levels may be useful for understanding a variety of
other price and firm dynamics in the data.
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Appendix A Additional Tables and Figures

Table A1: Pass-through estimates from previous studies in levels and logs.

Study Industry Cost shock Pass-through estimate and notes

Studies measuring pass-through in levels:
Barzel (1976) Cigarettes Excise taxes 1.065
Genesove and Mullin (1998) Refined sugar Commodity costs 0.93–1.02
Bettendorf and Verboven (2000) Coffee Commodity costs 0.94
Young and Bielinska-Kwapisz
(2002)

Alcohol Excise taxes 0.41–1.86

Dutta, Bergen, and Levy (2002) Orange juice Commodity and
wholesale costs

“We find that retail transaction prices[...] respond quickly
and fully to changes in costs.”

Chouinard and Perloff (2004) Gasoline State excise taxes 1.01
Kenkel (2005) Alcohol Excise taxes 0.89–4.19 (“If there were cost shocks other than the tax hike

over this period, the estimates in Table 1 may overstate the
rate of tax pass-through.”)

Leibtag, Nakamura, Nakamura,
and Zerom (2007)

Coffee Commodity costs 0.86 (commodity to wholesale), 0.90 (commodity to re-
tail), 1.02 (wholesale to retail) (“If a cost change persists
for several periods it will be incorporated into manufac-
turer prices approximately cent-for-cent with the size of
the change in the commodity cost.”)

Hanson and Sullivan (2009) Cigarettes Excise taxes 1.08–1.17
Nakamura and Zerom (2010) Coffee Commodity costs 0.85 (commodity to wholesale), 0.92 (commodity to re-

tail), 0.96 (wholesale to retail) (Uses same data sources as
Leibtag et al. 2007.)

Marion and Muehlegger (2011) Gasoline and diesel Excise taxes 1.03–1.06 (gasoline taxes), 1.07–1.09 (diesel taxes) (“We
cannot reject a null hypothesis of merely full pass-
through.”)
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Harding, Leibtag, and Lovenheim
(2012)

Cigarettes Excise taxes 0.85–1.02 (Pass-through “stabilizes around one at 52 miles
from tax border.”)

DeCicca, Kenkel, and Liu (2013) Cigarettes Excise taxes 1.02 (“We cannot reject the hypothesis that the rate of shift-
ing is 1.”)

Fabra and Reguant (2014) Electricity Emissions costs 0.83–0.86 (“Except for off-peak hours, we are unable to
reject full pass-through in all specifications.”)

Chiou and Muehlegger (2014) Cigarettes Excise taxes 0.80 (premium cigarettes), 0.92 (discount cigarettes).
Conlon and Rao (2020) Distilled spirits Excise taxes 0.80–3.78
Cawley et al. (2020) Sugar-sweetened

beverages
Excise taxes 0.61 (“Stores in Oakland raised prices of taxed beverages

by 1.00 cent per ounce on average after on year, which is
exactly the amount of the tax.” The lower pass-through
estimate is the difference relative to untaxed stores.)

Butters et al. (2022) Several nondurable
goods

Excise taxes, shipping
costs, and commodity
costs

1.01 (case study of Washington excise tax), 1.01 (all ex-
cise taxes, with category-specific estimates ranging from
0.72–1.42), 1.08 (national excise tax), 0.97 (sales taxes), 0.75
(wholesale prices), 1.01 (regulated milk farm prices), 1.20
(beer shipping costs)

Alvarez et al. (2024) Nondurable
household products

Materials costs 0.8–1.1 (aggregate shocks) “[Manufacturers] typically
achiev[e] complete pass-through within two months for
aggregate shocks and instantaneously for product-specific
shocks. Retailers [... achieve] complete cost pass-through
within five months for aggregate shocks”

Studies measuring pass-through in logs / percentages:
Kinnucan and Forker (1987) Dairy products Commodity costs 0.33–0.46 (fluid milk), 0.50–0.58 (cheese), 0.42–0.71 (but-

ter), 0.07–0.22 (ice cream)
Ashenfelter, Ashmore, Baker, and
McKernan (1998)

Office supplies Merchandise costs 0.15 (idiosyncratic shocks), 0.85 (aggregate shocks, esti-
mated indirectly using sum of reaction to own and com-
petitors’ cost shocks)

Gron and Swenson (2000) Cars Wage costs 0.38–0.47
Peltzman (2000) CPI / PPI indices Input costs 0.35–0.51
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Leibtag et al. (2007) Coffee Commodity costs 0.26 (commodity to wholesale), 0.25 (commodity to retail)
Kim and Cotterill (2008) Processed cheese Input costs 0.034–0.375
Hellerstein (2008) Beer Exchange rates, inputs

costs
0.11 (exchange rate), 0.34–0.39 (packaging, wages, and rent
costs)

Leibtag (2009) Agricultural
products

Input costs 0.04–0.41 (commodity inputs to farm and wholesale
prices), 0.02–0.18 (farm prices to retail prices), 0.00-0.05
(energy prices to retail prices), 0.00-0.15 (grocery store
wages to retail prices)

Hellerstein and Villas-Boas (2010) Manufacturing
industries, cars

Exchange rates 0.35 (average across NAICS 3-digit industries), 0.38 (aver-
age across car models)

Nakamura and Zerom (2010) Coffee Commodity costs 0.26 (commodity to wholesale), 0.25 (commodity to retail)
Goldberg and Hellerstein (2013) Beer Exchange rate 0.07 (exchange rate to retail), 0.05 (exchange rate to whole-

sale), 1.05 (wholesale to retail)
Auer and Schoenle (2016) Imports Exchange rate 0.35 (average of aggregate pass-through rate across NAICS

3-digit industries)
De Loecker et al. (2016) Manufacturing Tariffs, other marginal

cost changes
0.30–0.40 (pass-through of firms’ estimated marginal costs
to prices)

Hong and Li (2017) Dairy, soft drinks,
bread, and tomato
paste/sauce

Commodity costs Ranging from 0.01 (tomato products) to 0.30 (milk)

Cavallo, Gopinath, Neiman, and
Tang (2021)

Imports from China U.S. tariffs 0.94 (0.97 for differentiated goods, 0.73 for undifferentiated
goods)

Auer et al. (2018) Cars Exchange rate 0.17 (average, pass-through is “half this rate for a car with
one standard deviation above-average quality”)

Amiti et al. (2019) Manufacturing Exchange rate 0.6 (own cost shocks), 1.0 (aggregate shocks, estimated
indirectly using sum of reaction to own and competitors’
cost shocks)

Minton and Wheaton (2022) PPI indices Oil / commodity costs 0.64–0.97 (adjusting for cost shares, at 1 year horizon)
Alexander, Han, Kryvtsov, and
Tomlin (2024)

Wholesalers Merchandise costs 0.79 (aggregate cost shocks), 0.69 (idiosyncratic shocks)
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Table A2: Unit root tests for commodity cost series.

Levels First differences
Autocorrelation (β) ADF test Autocorrelation (γ) ADF test

(std. error) p-value (std. error) p-value

Retail gasoline
Unleaded terminal 0.996 (0.007) 0.731 0.449 (0.058) 0.000
Premium unleaded terminal 0.995 (0.006) 0.665 0.442 (0.058) 0.000

Food products
Coffee 0.983 (0.010) 0.322 0.229 (0.052) 0.000
Sugar 0.975 (0.018) 0.242 0.199 (0.083) 0.000
Beef 0.997 (0.008) 0.939 0.238 (0.042) 0.000
Rice 0.987 (0.010) 0.165 0.347 (0.078) 0.000
Flour 0.984 (0.011) 0.343 0.213 (0.047) 0.000
Orange 0.967 (0.013) 0.028 0.238 (0.045) 0.000

Manufacturing input costs
Materials 0.987 (0.013) 0.549 0.334 (0.083) 0.072
Materials + energy 0.992 (0.010) 0.537 0.347 (0.086) 0.079
Materials + energy + prod. labor 0.989 (0.010) 0.562 0.362 (0.092) 0.094

Note: Columns 1 and 4 report coefficients estimated from the specifications,

ct = βct−1 + εt,

∆ct = γ∆ct−1 + ε̂t.

Columns 2 and 5 report Newey-West standard errors with four lags. Columns 3 and 6 report the p-value
from Augmented Dickey-Fuller tests for unit roots, where the null hypothesis is that the series is a unit root
process. For manufacturing input costs, we report median p-values across all industries.
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Table A3: Granger causality tests for commodity and retail prices.

Granger causality test p-value
∆c causes ∆p ∆p causes ∆c

Retail gasoline
Terminal Unleaded to Station Price Unleaded 0.000 0.209
Terminal Premium ULD to Station Price Premium ULD 0.000 0.508

Food products
Coffee Commodity (IMF) to Retail (BLS) 0.000 0.334
Sugar Commodity (IMF) to Retail (BLS) 0.003 0.652
Beef Commodity (IMF) to Retail (BLS) 0.688 0.956
Rice Commodity (IMF) to Retail (BLS) 0.353 0.877
Flour Commodity (IMF) to Retail (BLS) 0.700 0.931
Orange Commodity (IMF) to Retail (BLS) 0.053 0.979

Note: Granger causality tests for whether changes in upstream prices, ∆c, Granger-cause changes in
downstream prices, ∆p, and vice versa. Column 1 reports p-values for the null hypothesis that changes in
upstream prices do not cause downstream prices, and column 2 reports p-values for the null hypothesis
that changes in downstream prices do not cause upstream prices. All tests use four lags. For the Perth,
Australia retail gasoline market, we run Granger causality tests using the fifty stations in the data with the
highest number of weekly observations.
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Table A4: Pass-through in gasoline markets: Other geographies and Känzig (2021) IV.

Long-run pass-through (8 weeks)
Logs Levels

Description Baseline IV Baseline IV

Australia, station-level, 2001–2022
Terminal to retail, Unleaded 0.899 0.805 0.991† 0.888†

(0.043) (0.118) (0.038) (0.132)
Terminal to retail, Premium Unleaded 0.887 0.812† 0.985† 0.901†

(0.041) (0.129) (0.036) (0.146)

Canada, city-level, 2007–2022
Crude to wholesale 0.553 0.713 0.927† 1.086†

(0.098) (0.146) (0.100) (0.186)
Wholesale to retail (excl. taxes) 0.859 0.848 1.008† 0.994†

(0.016) (0.042) (0.022) (0.049)

South Korea, station-level, 2008–2022
Refinery to retail, Unleaded 0.926 0.935† 0.997† 1.012†

(0.044) (0.097) (0.052) (0.108)

United States, national, 1990–2022
NY Harbor spot price to retail 0.570 0.605 0.954† 0.955†

(0.051) (0.115) (0.053) (0.111)

Note: Long-run pass-through at eight weeks using data from Australia, Canada, South Korea, and the
United States. Driscoll-Kraay standard errors (Newey-West for the U.S.) with eight lags in parentheses.
The IV columns use OPEC announcement shocks from Känzig (2021) as an instrument for commodity price
changes. † indicates estimates for which a pass-through of one is within the 90 percent confidence interval.
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Table A5: IMF primary commodity prices and sources.

Commodity series IMF Series ID Description

Global price of Coffee, Other
Mild Arabica

PCOFFOTMUSDM Coffee, Other Mild Arabicas, International Coffee Orga-
nization New York cash price, ex-dock New York

Global price of Sugar, No. 16,
US

PSUGAUSAUSDM Sugar, U.S. import price, contract no. 16 futures position

Global price of Beef PBEEFUSDM Beef, Australian and New Zealand 85% lean fores, CIF
U.S. import price

Global price of Rice, Thailand PRICENPQUSDM Rice, 5 percent broken milled white rice, Thailand nom-
inal price quote

Global price of Wheat PWHEAMTUSDM Wheat, No. 1. Hard Red Winter, ordinary protein,
Kansas City

Global price of Orange PORANGUSDM Generic 1st ’JO’ Future

8



Ta
bl

e
A

6:
Fo

od
pr

od
uc

ts
co

m
m

od
it

y
an

d
re

ta
il

pr
ic

e
se

ri
es

w
it

h
un

it
co

nv
er

si
on

fa
ct

or
s.

C
om

m
od

it
y

se
ri

es
IM

F
Se

ri
es

ID
U

ni
ts

BL
S

A
ve

ra
ge

Pr
ic

e
D

at
a

se
-

ri
es

Se
ri

es
ID

35
U

ni
tc

on
ve

rs
io

n
fa

ct
or

G
lo

ba
l

pr
ic

e
of

C
off

ee
,

O
th

er
M

ild
A

ra
bi

ca
PC

O
FF

O
T

M
U

SD
M

C
en

ts
pe

r
Po

un
d

C
off

ee
,1

00
pe

rc
en

t,
gr

ou
nd

ro
as

t,
pe

r
lb

.
71

73
11

,
71

73
12

1.
23

5
(1

9%
w

ei
gh

t
lo

st
in

ro
as

ti
ng

pr
oc

es
s36

)

G
lo

ba
l

pr
ic

e
of

Su
ga

r,
N

o.
16

,U
S

PS
U

G
A

U
SA

U
SD

M
C

en
ts

pe
r

Po
un

d
Su

ga
r,

w
hi

te
,p

er
lb

.
71

52
11

,
71

52
12

1

G
lo

ba
lp

ri
ce

of
Be

ef
PB

EE
FU

SD
M

C
en

ts
pe

r
Po

un
d

G
ro

un
d

be
ef

,1
00

%
be

ef
,p

er
lb

.(
45

3.
6

gm
)

70
31

12
1

G
lo

ba
l

pr
ic

e
of

R
ic

e,
T

ha
i-

la
nd

PR
IC

EN
PQ

U
SD

M
D

ol
la

rs
pe

r
M

et
ri

c
To

n
R

ic
e,

w
hi

te
,l

on
g

gr
ai

n,
un

-
co

ok
ed

,p
er

lb
.(

45
3.

6
gm

)
70

13
12

0.
04

54
(1

00
do

lla
rs

pe
rc

en
t/

22
04

.6
2

lb
s

pe
r

m
et

ri
c

to
n)

G
lo

ba
lp

ri
ce

of
W

he
at

PW
H

EA
M

T
U

SD
M

D
ol

la
rs

pe
r

M
et

ri
c

To
n

Fl
ou

r,
w

hi
te

,
al

l
pu

rp
os

e,
pe

r
lb

.(
45

3.
6

gm
)

70
11

11
0.

06
13

(1
00

do
lla

rs
pe

rc
en

t/
22

04
.6

2
lb

s
pe

r
m

et
ri

c
to

n
w

he
at
/

44
.4

0
lb

s
flo

ur
pe

r
60

lb
s

(1
bu

sh
el

)w
he

at
37

)

G
lo

ba
lp

ri
ce

of
O

ra
ng

e
PO

R
A

N
G

U
SD

M
D

ol
la

rs
pe

r
Po

un
d

O
ra

ng
e

ju
ic

e,
fr

oz
en

co
n-

ce
nt

ra
te

,1
2

oz
.

ca
n,

pe
r

16
oz

.(
47

3.
2

m
L)

71
31

11
51

.7
(1

00
do

lla
rs

pe
r

ce
nt
×

4.
13

3
lb

s
or

an
ge

so
lid

s
/

ga
llo

n
co

nc
en

tr
at

e
×

(1
/8

)g
al

lo
n

pe
r

16
fl

oz
.38

)

35
Fo

r
so

m
e

pr
od

uc
ts

,m
ul

ti
pl

e
se

ri
es

ar
e

av
ai

la
bl

e
w

hi
ch

tr
ac

k
di
ff

er
en

tp
ac

ka
ge

si
ze

s.
36

N
ak

am
ur

a
an

d
Z

er
om

(2
01

0)
.

37
U

SD
A

C
on

ve
rs

io
n

Ta
bl

e
(p

.4
1)

fo
r

po
un

ds
w

hi
te

flo
ur

pe
r

bu
sh

el
of

w
he

at
.

38
U

SD
A

C
on

ve
rs

io
n

Ta
bl

e
(p

.3
4)

fo
r

or
an

ge
so

lid
s

pe
r

ga
llo

n
of

re
ta

il
co

nc
en

tr
at

e
(4

1.
8

re
ta

il
br

ix
fr

om
D

ut
ta

et
al

.2
00

2)
.

9

https://ers.usda.gov/sites/default/files/_laserfiche/publications/41880/33132_ah697_002.pdf?v=68016
https://www.ams.usda.gov/sites/default/files/media/TechnicalProceduresManual.pdf


Table A7: Robustness: Pass-through of commodity costs to retail food prices.

Pass-through (12 mos.) Pass-through of
Product category Baseline With Month FEs future cost changes

Coffee 0.946† (0.099) 0.952† (0.094) -0.038 (0.028)
Sugar 0.691 (0.072) 0.673 (0.070) -0.052 (0.049)
Beef 0.899† (0.126) 0.887† (0.125) 0.018 (0.063)
Rice 0.882† (0.169) 0.874† (0.164) -0.125 (0.068)
Flour 0.865† (0.160) 0.872† (0.148) -0.099 (0.085)
Frozen orange juice 0.974† (0.111) 0.983† (0.110) -0.051 (0.046)

Note: The first set of columns (“Baseline”) reports the long-run pass-through in levels
∑K

k=0 bk from specifi-
cation (3), using a horizon of K = 12 months. The second set of columns (“With Month FEs”) reports the
long-run pass-through in levels

∑K
k=0 bk from a specification augmented with month-of-year fixed effects,

∆pit =

K∑
k=0

bk∆ct−k + ai + ϕm(t) + εit,

where ϕm(t) denote month-of-year fixed effects. The third set of columns reports the pass-through of future
commodity cost changes to prices,

∑H
h=1 βh from the specification,

∆pit =

K∑
k=0

bk∆ct−k +

H∑
h=1

βh∆ct+h + ai + εit.

We use three leads of costs (H = 3). For goods with several BLS Average Price series, we report Driscoll-
Kraay standard errors; otherwise, we use Newey-West standard errors. † indicates estimates for which a
pass-through of one is within the 90 percent confidence interval.
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Table A8: Higher-priced products exhibit lower log pass-through, with no systematic
difference in level pass-through: Five groups.

Panel A: In percentages

Retail price inflation
Rice Flour Coffee

Commodity Inflation × Unit Price Group 2 −0.070** −0.001 −0.034
(0.017) (0.019) (0.022)

Commodity Inflation × Unit Price Group 3 −0.095** −0.006 −0.088**
(0.015) (0.006) (0.021)

Commodity Inflation × Unit Price Group 4 −0.127** −0.044** −0.102**
(0.018) (0.010) (0.019)

Commodity Inflation × Unit Price Group 5 −0.197** −0.054** −0.105**
(0.021) (0.009) (0.015)

UPC FEs Yes Yes Yes
N (thousands) 399.4 101.4 1570.0
R2 0.16 0.06 0.15

Panel B: In levels

∆ Retail price
Rice Flour Coffee

∆ Commodity Price × Unit Price Group 2 0.007 0.048 −0.003
(0.069) (0.029) (0.040)

∆ Commodity Price × Unit Price Group 3 0.084 0.048** −0.100
(0.056) (0.021) (0.063)

∆ Commodity Price × Unit Price Group 4 0.052 −0.051 −0.120*
(0.070) (0.063) (0.070)

∆ Commodity Price × Unit Price Group 5 0.050 −0.084** −0.090*
(0.133) (0.037) (0.046)

UPC FEs Yes Yes Yes
N (thousands) 399.4 101.4 1570.0
R2 0.07 0.05 0.15

Note: Panel A reports results from specification (7), and panel B reports results from specification (8). In
each quarter, products are split into five groups with equal sales by average unit price over the past year,
ordered from lowest (1) to highest unit price (5). Regressions weighted by sales. Standard errors clustered
by brand. * indicates significance at 10%, ** at 5%.
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Table A9: Effect of commodity cost changes on price dispersion.

Panel A: Price Dispersion Std. Dev of Unit Prices Std. Dev. of Log Unit Prices
Rice Flour Coffee Rice Flour Coffee
(1) (2) (3) (4) (5) (6)

Log Commodity Price 0.007 -0.052 -0.026 -0.098** -0.070** -0.108**
(0.007) (0.046) (0.016) (0.012) (0.028) (0.019)

Time Trend Control Yes Yes Yes Yes Yes Yes
N 60 60 60 60 60 60
R2 0.38 0.90 0.11 0.62 0.86 0.83

Panel B: Changes in Dispersion ∆ Std. Dev. of Unit Prices ∆ Std. Dev. of Log Unit Prices
Rice Flour Coffee Rice Flour Coffee
(1) (2) (3) (4) (5) (6)

Commodity Inflation -0.002 -0.014 0.004 -0.054** -0.020 -0.040**
(0.002) (0.016) (0.008) (0.013) (0.016) (0.014)

N 56 56 56 56 56 56
R2 0.01 0.01 0.01 0.26 0.04 0.16

Note: Panels A and B present results from the following specifications

StandardDeviation(UnitPrices)t = β log ct + δt + εt, (Panel A)
∆StandardDeviation(UnitPrices)t = β∆ log ct + εt, (Panel B)

where UnitPriceDispersiont is the standard deviation of unit prices (measured in either levels or logs) across
products in the category in quarter t, and ct is the commodity price in quarter t. Newey-West standard
errors in parentheses. * indicates significance at 10%, ** at 5%.
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Table A10: Pass-through for manufacturing industries using commodity price instrument.

∆ Log Output Pricet
Inputs: Materials + Energy + Production Labor

(IV1) (IV2) (IV3)

∆ Log Input Pricet 0.115 0.097 0.303
(0.205) (0.205) (0.326)

(InputCost/Sales)t−1 0.012 0.016 0.023
(0.013) (0.015) (0.014)

∆ Log Input Pricet × (InputCost/Sales)t−1 1.016** 1.019** 0.792**
(0.244) (0.246) (0.393)

Industry FEs Yes Yes Yes
Year FEs Yes Yes Yes
N 21 414 21 414 21 414
R2 0.43 0.43 0.43

Note: In each column, ∆Log Input Pricet is instrumented with an interaction of the commodity price factor
with SIC industry fixed effects. Column 1 uses input costs and prices for materials, column 2 uses input
costs and prices for materials plus energy, and column 3 uses input costs and prices for materials, energy,
and production labor. Input price inflation is an expenditure-weighted average across components of cost.
Input and output price indices deflated using CPI excluding food and energy. Standard errors two-way
clustered by industry and year. * indicates significance at 10%, ** at 5%.

Table A11: Pass-through for manufacturing industries at alternate horizons.

∆ Log Output Pricet−h→t
Horizon (years): h = 1 h = 2 h = 3 h = 4 h = 5

(1) (2) (3) (4) (5)

∆ Log Input Pricet−h→t 0.079 0.126 0.183 0.208 0.231*
(0.132) (0.132) (0.125) (0.130) (0.137)

(InputCost/Sales)t−h 0.004 0.021 0.035 0.045 0.050
(0.011) (0.019) (0.024) (0.031) (0.036)

∆ Log Input Pricet−h→t × (InputCost/Sales)t−h 0.947** 0.931** 0.895** 0.876** 0.829**
(0.203) (0.208) (0.187) (0.184) (0.192)

Industry FEs Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes
N 27 381 26 922 26 463 26 004 25 545
R2 0.42 0.49 0.54 0.58 0.60

Note: Column 1 replicates column (2) from Table 8. Columns 2–5 repeat the analysis, calculating changes
in input costs and output prices over longer horizons from h = 2, ..., 5 years. Standard errors two-way
clustered by industry and year. * indicates significance at 10%, ** at 5%.

13



Table A12: Pass-through for manufacturing industries with below median frequency of
price adjustment.

∆ Log Output Pricet
All Industries with

Industries Below Median FPA
(1) (2) (3) (4)

∆ Log Input Pricet 0.690** 0.079 0.396** −0.035
(0.072) (0.132) (0.069) (0.095)

(InputCost/Sales)t−1 0.004 −0.003
(0.011) (0.008)

∆ Log Input Pricet × (InputCost/Sales)t−1 0.947** 0.908**
(0.203) (0.203)

Industry FEs Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes
N 27 381 27 381 13 483 13 483
R2 0.40 0.42 0.33 0.34

Note: Columns 1–2 replicate the first two columns from Table 8. Columns 3–4 repeat the analysis using
industries with below median frequency of price adjustment. Industry-level frequencies of price adjustment
are from Pasten et al. (2020). Standard errors two-way clustered by industry and year. * indicates significance
at 10%, ** at 5%.
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Table A13: Response of quantity shares to commodity price changes.

Rice Flour Coffee

Response of Quantity Share: Unit Price Group 1 0.005 0.002 0.029*
(0.011) (0.006) (0.017)

Response of Quantity Share: Unit Price Group 2 0.003 −0.008 0.006
(0.003) (0.005) (0.008)

Response of Quantity Share: Unit Price Group 3 −0.004** −0.000 −0.005
(0.002) (0.004) (0.007)

Response of Quantity Share: Unit Price Group 4 −0.005 0.006 −0.013**
(0.004) (0.004) (0.006)

Response of Quantity Share: Unit Price Group 5 0.001 0.001 −0.017**
(0.002) (0.002) (0.008)

N 68 68 68

Note: Each cell reports the coefficient β estimated from the specification,

∆QuantitySharegt = β∆ log ct + ϕq(t) + εgt.

where ∆ log ct is commodity price inflation from quarter t to quarter t+ 4, and ϕq(t) are quarter-of-year fixed
effects. The outcome variable ∆QuantitySharegt is constructed as follows. In each quarter t, products in
each category are split into groups of equal sales by average unit price over the past year. For the subset of
products that are also observed in quarter t + 4, we calculate Quantitygt and Quantitygt+4 as the total units
(e.g., ounces of rice) sold of products in unit price group g in quarter t and quarter t + 4. Then,

QuantitySharegt =
Quantitygt∑5

g′=1 Quantityg′t

.

Finally, ∆QuantitySharegt = QuantitySharegt+4 − QuantitySharegt is the change in the quantity share
of products in unit price group g that are observed in quarter t + 4. Note that, by construction,∑

g ∆QuantitySharegt = 0. Newey-West standard errors in parentheses. * indicates significance at 10%,
** at 5%.
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Table A14: Volatility of consumer price inflation, allowing for endogenous changes in
expenditure shares due to Leontief production.

Std. deviation of annual
inflation, 1982–2018

Baseline Leontief
(Cobb-Douglas) inputs

CES demand (percentage markups):
Variable costs =Materials 2.5% 2.5%
Variable costs =Materials +wages 1.7% 2.0%
Variable costs =Materials +wages + fixed capital cons. 1.6% 1.7%

Logit demand (additive markups) 1.3% 1.4%

Note: In the baseline, we assume each industry’s expenditure shares on inputs Ωi j are constant (as in the
log-linearized model). This table reports the volatility of inflation rates if we instead update industry
expenditure shares in each period using the deviation in each industry’s prices from 2012 to discipline the
changes in expenditure shares, under the assumption that industry production functions are Leontief in all
inputs.
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Figure A1: Weekly average retail unleaded petrol (ULP) price and terminal gas price for
a station in Kewdale (Perth suburb).
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Figure A2: Pass-through of premium unleaded petrol wholesale costs to retail prices.
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(a) Pass-through in levels.
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(b) Pass-through in logs.

Note: Panels (a) and (b) show cumulative pass-through estimated from specifications (3) and (4). Standard
errors are two-way clustered by postcode and year, and standard errors for cumulative pass-through
coefficients

∑t
k=0 bk and

∑t
k=0 βk are computed using the delta method.
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Figure A3: Comovement of retail gas margins with strength of weekly price cycles.
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(a) Unleaded petrol (ULP).
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(b) Premium unleaded petrol (PULP).

Note: In each panel, the blue line (left axis) plots the six-month moving average of margins across all
stations. The red line (right axis) plots the R2 from a regression of gas station margins of day-of-week
dummies for each quarter.

Figure A4: Pass-through of coffee commodity costs to retail prices: IV estimates.
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Note: The blue points are estimates of cumulative pass-through from specification (3). The red points
use current and lagged Brazil and Colombia exchange rates (FRED series CCUSMA02BRM618N and
COLCCUSMA02STM) and year fixed effects to instrument for commodity cost changes. The yellow points use
twelve lags of minimum and maximum temperatures in coffee-growing regions in Brazil (21.55◦S, 45.34◦W)
and Colombia (4.81◦N, 75.70◦W) and month-of-year fixed effects to instrument for commodity cost changes.
Robust standard errors cumulated using the delta method.
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Figure A5: Passthrough of sugar commodity costs to retail prices.
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(a) Sugar No. 16 commodity costs (IMF) and retail white granulated sugar prices (U.S. CPI).

0 2 4 6 8 10 12
Months after cost change

0.0

0.2

0.4

0.6

0.8

1.0

C
ha

ng
e 

in
 re

ta
il 

pr
ic

e

(b) Pass-through in levels.
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(c) Pass-through in logs.

Note: Panel (a) plots the time series of the commodity price from the IMF and the Average Price Data series
from the BLS. The series are adjusted by the conversion factors in Appendix Table A6 so that the two series
are in comparable units. Panels (b) and (c) plot the cumulative pass-through to month T,

∑T
k=0 bk, from the

specifications (3) and (4), using a total horizon of K = 12 months.

19



Figure A6: Passthrough of beef commodity costs to retail prices.
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(a) Beef commodity costs (IMF) and retail ground beef prices (U.S. CPI).
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(b) Pass-through in levels.
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(c) Pass-through in logs.

Note: Panel (a) plots the time series of the commodity price from the IMF and the Average Price Data series
from the BLS. The series are adjusted by the conversion factors in Appendix Table A6 so that the two series
are in comparable units. Panels (b) and (c) plot the cumulative pass-through to month T,

∑T
k=0 bk, from the

specifications (3) and (4), using a total horizon of K = 12 months.
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Figure A7: Passthrough of rice commodity costs to retail prices.
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(a) Thailand rice commodity costs (IMF) and retail long-grain white rice prices (U.S. CPI).
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(b) Pass-through in levels.
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(c) Pass-through in logs.

Note: Panel (a) plots the time series of the commodity price from the IMF and the Average Price Data series
from the BLS. The series are adjusted by the conversion factors in Appendix Table A6 so that the two series
are in comparable units. Panels (b) and (c) plot the cumulative pass-through to month T,

∑T
k=0 bk, from the

specifications (3) and (4), using a total horizon of K = 12 months.
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Figure A8: Passthrough of flour commodity costs to retail prices.
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(a) Wheat commodity costs (IMF) and retail all-purpose flour prices (U.S. CPI).

0 2 4 6 8 10 12
Months after cost change

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
ha

ng
e 

in
 re

ta
il 

pr
ic

e

(b) Pass-through in levels.
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(c) Pass-through in logs.

Note: Panel (a) plots the time series of the commodity price from the IMF and the Average Price Data series
from the BLS. The series are adjusted by the conversion factors in Appendix Table A6 so that the two series
are in comparable units. Panels (b) and (c) plot the cumulative pass-through to month T,

∑T
k=0 bk, from the

specifications (3) and (4), using a total horizon of K = 12 months.
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Figure A9: Passthrough of frozen orange juice commodity costs to retail prices.
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(a) Frozen orange juice commodity costs (IMF) and retail orange concentrate prices (U.S. CPI).
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(b) Pass-through in levels.
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(c) Pass-through in logs.

Note: Panel (a) plots the time series of the commodity price from the IMF and the Average Price Data series
from the BLS. The series are adjusted by the conversion factors in Appendix Table A6 so that the two series
are in comparable units. Panels (b) and (c) plot the cumulative pass-through to month T,

∑T
k=0 bk, from the

specifications (3) and (4), using a total horizon of K = 12 months.
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Figure A10: Price of a coffee UPC in two stores in same 3-digit ZIP in Philadelphia, PA.
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Figure A11: Gross margins, operating margins, and entry for retail gas stations.
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(a) Gross margin.
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(b) Operating margin (defined as operating income / gross profits).
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(c) Entry.
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Appendix B Proofs

B.1 Estimating Long-Run Pass-through

In this section, we consider a general time-dependent model of nominal rigidities and
characterize the long-run pass-through estimated by a distributed lag regression in this
environment.

Our representation of a general time-dependent model follows Werning (2022). We
take as primitive a hazard function hs, where hs is the probability that a firm is able to reset
its price s + 1 periods since the previous reset. (I.e., the probability that a firm that reset
its price last period is able to reset its price in the current period is h0).

We define the survival probability Ss as the probability that a price spell lasts at least s
periods,

Ss+1 = Ss(1 − hs),

with S0 = 1. We require that no price spells are infinitely lived, so that lims→∞ Ss = 0.
Firms’ profit-maximizing prices in each period, which we denote p∗t , are a function of

a commodity cost, ct. We make three assumptions about firms’ profit-maximizing prices
and costs: (1) the profit-maximizing price is an affine function of costs; (2) commodity
costs follow an AR(1) process; and (3) a firms’ losses from setting some price pt , p∗t scale
quadratically in the distance between the price and the profit-maximizing price.

Assumption B1 (Profit-maximizing prices). Absent nominal rigidities, a firm’s desired
price in period t is

p∗t = µ(ct + w) +m,

where µ is a fixed percentage markup, w is the (constant) cost of non-commodity inputs,
and m is a fixed additive markup.

Assumption B2 (Cost process). The commodity cost process follows

ct = ρct−1 + νt,

where ρ ≤ 1 is the persistence of the process and νt is a mean-zero shock.

Assumption B3. Firms’ losses from setting price pt are given by,

L = −
ω
2

(
pt − p∗t

)2 .

Given these assumptions, Proposition B1 shows that the long-run pass-through esti-
mated using a distributed lag regression is equal to the percentage markup µ when the
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number of lags included in the regression is large and the commodity cost is unit root.

Proposition B1 (Estimating long-run pass-through). Suppose the commodity cost process is
unit root (ρ = 1). Given the distributed lag regression,

∆pt =

K∑
k=0

bt∆ct + εt,

as K→∞, the estimated long-run pass-through
∑K

k=0 bt converges to the markup µ.

Proof. The proof proceeds in two parts. First, we show that firms’ optimal reset prices each
period are equal to a constant plus current commodity costs times the markup µ. Then,
we show that the long-run pass-through from a distributed lag specification measures µ.

Firms’ optimal reset prices solve the maximization problem,

preset
t = argmaxp Et

− ∞∑
s=0

βsSs
ω
2

(
p − p∗t+s

)2

 .
The first order condition yields an expression for the optimal reset price,

preset
t = µ

∑
∞

s=0 β
sSsE [ct+s]∑
∞

s=0 βsSs
+

(
µw +m

)
= µ

∑
∞

s=0 β
sSsρs∑

∞

s=0 βsSs
ct +

(
µw +m

)
. (19)

For convenience, define ϕ ≡
∑
∞

s=0 β
sSsρs∑

∞

s=0 β
sSs

. Note that limρ→1 ϕ = 1. Next, consider the dis-
tributed lag specification in Proposition B1. In expectation, the change in the price ∆pt

is,

E[∆pt] =
∞∑

k=0

Sk∑
∞

s=0 Ss
hk

(
preset

t − preset
t−k−1

)
.

In this expression, Sk∑
∞

s=0 Ss
is the fraction of ongoing price spells with a length of k periods, hk

is the probability that those firms will reset their price in the current period, and preset
t −preset

t−k−1

is the change in price they will choose if they reset their price today. By substituting in
the reset price (19), we find that

E
[
∆pt

]
= µϕ

∞∑
k=0

∞∑
j=k

h jS j∑
∞

s=0 Ss
∆ct−k = µϕ

∞∑
k=0

∑
∞

j=k

(
S j − S j+1

)∑
∞

s=0 Ss
∆ct−k = µϕ

∞∑
k=0

Sk∑
∞

s=0 Ss
∆ct−k.

As the number of lags K → ∞, clearly bk = µϕ
Sk∑
∞

s=0 Ss
. Thus, the estimated long-run pass-

through
∑
∞

k=0 bk = µϕ. When ρ = 1 (i.e., the commodity price is unit root), ϕ = 1, and
hence limρ→1

∑
∞

k=0 bk = µ. □
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Even whenρ , 1,ϕ is close to one for reasonable parameters. For example, supposeρ =
0.96 (the minimum autocorrelation among commodity series in Table A2), β = (0.96)1/12,
and firms have Taylor pricing, resetting prices every 12 months. This yields a value of
ϕ ≈ 0.983. If firms reset prices every 6 months, this rises to ϕ ≈ 0.992.

B.2 Proofs for Section 7

Proof of Proposition 1. Profit maximization yields the following first-order conditions for
prices

1 =
(

p j − c j

p j

)
−∂ log D j

(
p,p0,Y

)
∂ log p j

.

Differentiating yields the change in firm j’s price d log p j in terms of changes in own costs
d log c j and others’ prices d log pn,

d log p j = d log c j −
p j − c j

c j

(
−∂ log D j

∂ log p j

)−1 J∑
n=1

−∂2 log D j

∂ log p j∂ log pn
d log pn. (20)

Given a proportional increase in all firms’ marginal costs d log c j = d log c for all j ∈ {1, ..., J},
under Assumption 2, complete log pass-through (i.e., d log p j = d log c for all j) is a solution
to (20) if and only if for all j,

J∑
n=1

∂2 log D j
(
p
)

∂ log p j∂ log pn
= 0. (21)

If D is scale invariant in inside prices,

log D j
(
λp,p0,Y

)
= φ j

(
p,p0,Y, λ

)
logλ + log D j

(
p,p0,Y

)
.

A first-order expansion around λ ≈ 1 also yields

log D j
(
λp,p0,Y

)
≈ log D j

(
p,p0,Y

)
+

J∑
n=1

∂ log D j

∂ log pn
logλ.

Setting the two equal,
J∑

n=1

∂ log D j

∂ log pn
= φ j

(
p,p0,Y, 1

)
.

Since scale invariance in inside prices imposes ∂φ j/∂p j = 0, (21) is satisfied. □
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Proof of Proposition 2. Profit maximization yields the standard first-order condition,

p j − c j =
D j

(
p,p0,Y

)
−∂D j

(
p,p0,Y

)
/∂p j

.

Differentiating yields the change in firm j’s price dp j in terms of changes in own costs dc j

and others’ prices dpn,

dp j = dc j −

(
∂D j

∂p j

)−1 J∑
n=1

(
∂D j

∂pn
+

D j

−∂D j/∂p j

∂2D j

∂p j∂pn

)
dpn. (22)

Given an identical increase in all firms’ costs, dc j = dc for all j ∈ {1, ..., J}, under Assump-
tion 2, complete pass-through in levels (i.e., dp j = dc for all j) is a solution to (22) if and
only if for all j,

D j
(
p
)

∂D j(p)
∂p j

 ∂∂p j

J∑
n=1

∂D j

∂pn

 = J∑
n=1

∂D j

∂pn
. (23)

Note that a first-order expansion of demand around λ ≈ 0 yields,

D j
(
p + λ1,p0,Y

)
≈ D j

(
p,p0,Y

)
+

J∑
n=1

∂D j

∂pn
λ.

Setting this equal to the expression for demand under shift invariance in inside prices
(Definition 2),

J∑
n=1

∂D j

∂pn
= ψ j

(
p,p0,Y, 0

)
D j

(
p,p0,Y

)
.

Noting that shift invariance in inside prices also imposes ∂ψ j/∂p j = 0, substitute this
expression into (23) to confirm that (23) is satisfied. □

Proof of Proposition 3. We prove by contradiction. Suppose D(p,p0,Y) is both scale invari-
ant and shift invariant. Scale invariance and shift invariance imply, respectively, that for
any price vector p and any j,

J∑
n=1

∂ log D j

∂ log pn
= φ j

(
p,p0,Y, 1

)
(24)

and
J∑

n=1

∂D j

∂pn

1
D j
= ψ j

(
p,p0,Y, 0

)
. (25)

Consider first a vector of identical prices p1 = p1, where p > 0 and 1 = (1, ..., 1) is a
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vector of ones of length J. Multiplying both sides of (25) by p and setting equal to (24)
yields,

J∑
n=1

∂ log D j

∂ log pn

∣∣∣∣∣∣∣
p=p1

= φ j
(
p1,p0,Y, 1

)
= pψ j

(
p1,p0,Y, 0

)
.

Now consider a vector of prices p2 = p1 + (p j − p)1 j, where p j , p and 1 j is a vector of
length J with a one in row j and zeros otherwise. In words, p2 is identical to p1 except for
the price of good j, which is now p j rather than p. Under scale invariance, ∂φ j/∂p j = 0, so:

J∑
n=1

∂ log D j

∂ log pn

∣∣∣∣∣∣∣
p=p2

= φ j
(
p2,p0,Y, 1

)
= φ j

(
p1,p0,Y, 1

)
= pψ j

(
p1,p0,Y, 0

)
. (26)

Likewise, under shift invariance, ∂ψ j/∂p j = 0, so:

∑
n

∂D j

∂pn

1
D j

∣∣∣∣∣∣∣
p=p2

= ψ j
(
p2,p0,Y, 0

)
= ψ j

(
p1,p0,Y, 0

)
.

We use this to rewrite:

J∑
n=1

∂ log D j

∂ log pn

∣∣∣∣∣∣∣
p=p2

=

J∑
n=1

∂D j

∂pn

p
D j
+
∂D j

∂p j

p j − p
D j

= pψ j
(
p1,p0,Y, 0

)
+
∂D j

∂p j

p j

D j

p j − p
p j

.

Setting this expression equal to (26), we find

∂ log D j

∂ log p j

p j − p
p j
= 0.

This contradicts Assumption 2 that ∂ log D j/∂ log p j < 0, concluding the proof. □

B.3 Proofs for Section 8.2

Proof of Proposition 5. The equilibrium is described by the following system of equations:

Q = p−θ, (Aggregate demand)

q =
Q
N
, (Symmetry)

πgross = pq − cq, (Definition of variable profits)

πop = πgross
− fo, (Definition of operating profits)

N = N0
(
πop
− fe

)ζ . (Entry condition)
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as well as a pricing equation that relates p to c. We log-linearize these equations and solve
for endogenous variables in terms of an exogenous change in cost, d log c. Note that the
log-linearized form of the pricing equation is

d log p = ρlog d log c,

with ρlog = 1 if demand is scale invariant and ρlog = (c/p) if demand is shift invariant. For
gross margins,

d log mgross = −
c

p − c

(
1 − ρlog

)
d log c.

Thus, gross margins are constant if demand is scale invariant and d log mgross/d log c < 0 if
demand is shift invariant. When demand is shift invariant, the change in gross margins
is, d log mgross = −

cq
pqd log c, which increases with the ratio of input costs to sales.

For operating margins and the number of firms, it will be useful to first define gross
industry profits Πgross =

(
p − c

)
Q.

d logΠgross = d log
(
p − c

)
− θd log p =

ρlog (1 − θ) p −
(
1 − θρlog

)
c

p − c
d log c.

Thus, d logΠgross/d log c > 0 if and only if ρlog > ρ∗, where

ρ∗ =
c
p

1
1 − θ (p − c)/p

∈ [c/p, 1).

We can then solve for the responses of operating margins and the number of firms using

d log mop =
fo

πop

(
πop
− fe

)(
πop − fe

)
+ ζπgross

d logΠgross

d log N =
ζπgross(

πop − fe
)
+ ζπgross

d logΠgross.

□

B.4 Proofs for Section 8.3

Proof of Proposition 6. From the perspective of firm j, demand is

D j =

∫ 1

0

∏
n, j

1
{
δin −

pn

p0
≤ δi j −

p j

p0

}
di =

∫
∞

−∞

[
F
(
δi j +

pn

p0
−

p j

p0

)]J−1

f
(
δi j

)
dδi j, (27)
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where the second equality uses the fact that δi j are i.i.d. draws from F. Taking the
derivative yields,

∂D j

∂p j
=

(
−

1
p0

)
(J − 1)

∫
∞

−∞

[
F
(
δi j +

pn

p0
−

p j

p0

)]J−2

f
(
δi j +

pn

p0
−

p j

p0

)
f
(
δi j

)
dδi j. (28)

From the firm’s first order condition, we can write its optimal price as

p j = βc + (1 − β)w +
D j(p, p0,Y)
−∂D j/∂p j

.

Evaluating (27) and (28) at the point where firms choose symmetric prices, we get the
following expression for the symmetric price p,

p = βc +
(
1 − β

)
w +

w
Ab
, where b = J (J − 1)

∫
∞

−∞

[
F
(
δi j

)]J−2 [
f
(
δi j

)]2
dδi j.

(A similar result for firms’ additive markups is derived in Perloff and Salop 1985.) The
term w/Ab is the additive markup and is priced relative to the wage. Note that b depends
only on the number of firms J and the distribution F, and so is independent of material or
labor prices. It is straightforward to verify the remaining claims on the pass-through of
changes in c and w to prices p using this closed-form expression. □

B.5 Relaxing Assumptions on Production Technology

This section explores whether relaxing assumptions about the production technology can
generate pass-through in levels of input cost changes. Suppose the production technology
takes the more general form,

y =
(
ωx

θ−1
θ + (1 − ω) (ℓα)

θ−1
θ

) θ
θ−1
,

where y is the firm’s output, x is quantity of the commodity input with price c, ℓ is the non-
commodity input with price w, θ is the elasticity of substitution between the commodity
and non-commodity inputs, and α are returns to scale in the non-commodity input. Given
this production technology, the firm’s price is equal to a markup µ times marginal cost mc.

In the main text, we assumed that θ = 0, α = 1, and dw/dc = 0, and characterized how
the markup µ must change in response to cost changes to yield complete pass-through
in levels. In this appendix, we instead assume µ is fixed and explore whether we can
generate complete pass-through in levels of changes to the commodity cost (dp/dc = 1),
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allowing for (1) non-Leontief production θ > 0, (2) decreasing returns to scale α < 1, and
(3) correlation between the cost of other inputs with the commodity cost, dw/dc , 0.

Relaxing Leontief production. Suppose we allow for any elasticity of substitution θ,
holding fixed α = 1 and dw/dc = 0. The change in marginal cost resulting from a change
in the commodity cost is

dmc =
( c
ωC

)−θ
dc.

Changes in the commodity cost translate one-for-one into changes in marginal cost when
θ = 0. For complete pass-through in levels dp/dc = 1, we must have:

1 = µ
dmc
dc
= µ

( c
ωC

)−θ
⇒ θ =

logµ
log c

ωC
.

This cannot always hold, since c/C fluctuates with the level of the commodity cost.

Decreasing returns to scale. Now suppose α ≤ 1, holding fixed θ = 0 and dw/dc = 0.
Decreasing returns to scale dampens the effect of increases in the commodity cost on
marginal cost, since as price increases, the firm shrinks and the effective cost of the non-
commodity input falls.

dmc
dc
= 1 + w

1
α

1 − α
α

y
1−2α
α

dy
dc
= 1 − (σ − 1)

1 − α
α

wℓ
αcy + wℓ

dp
dc
,

where in the second equality we denote −d log y/d log p = σ and assume markups are
given by the Lerner formula µ = σ/(σ − 1). For complete pass-through in levels, we must
have

wℓ
αcy + wℓ

=
1

σ (σ − 1)
α

1 − α
,

which cannot hold always since the non-commodity input’s share in marginal costs varies
with the commodity price.

Correlated input costs. Now suppose θ = 0 and α = 1. We can generate complete pass-
through in levels if dw/dc = −(µ − 1)/µ. While this can generate complete pass-through
in levels in principle, we think this negative correlation is unlikely to hold in practice.
For example, in retail gasoline, other input costs such as shipping and transport costs are
instead probably positively correlated with gasoline costs.
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Appendix C Retail Gasoline Data from Other Markets

C.1 Canada

We use weekly price data for 71 cities in 10 Canadian provinces provided by Kalibrate
solutions.39 These prices are collected across cities through a daily survey of pump prices
funded by the Government of Canada and used for analyses by National Resources
Canada.

C.2 South Korea

We use daily station-level price data from Opinet, a service started in 2008 by the Korea
National Oil Corporation to provide customer transparency about petroleum product
prices and enable research.40 These data cover all gas stations within each city in South
Korea; data files are available by city/county within each province. However, some
stations appear to have incomplete coverage. Hence, for all results using these data, we
limit our analyses to stations that have at least 500 daily price observations (i.e., at least
10% of days during the full sample period). Opinet also provides weekly average refinery
supply prices, which we use as the measure of costs facing retail stations.

C.3 United States

United States weekly gasoline price data come from the Energy Information Adminis-
tration (EIA). For upstream prices, we use the New York Harbor Conventional Gasoline
Regular Spot Price (EIA sourcekey EER EPMRU PF4 Y35NY DPG), which is a wholesale spot
price for RBOB gasoline. For retail prices, we use weekly U.S. regular conventional retail
gas prices (EIA sourcekey EMM EPMRU PTE NUS DPG).

39Weekly prices can be downloaded from https://charting.kalibrate.com.
40These data are available for download at https://www.opinet.co.kr.
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