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Abstract

How does an increase in market size, say due to globalization, affect welfare? We study

this question using a model with monopolistic competition, heterogeneous markups, and

fixed costs. We characterize changes in welfare and decompose changes in allocative effi-

ciency into three different effects: (1) reallocations across firms with heterogeneous price

elasticities due to intensifying competition, (2) reallocations due to the exit of marginally

profitable firms, and (3) reallocations due to changes in firms’ markups. Whereas the sec-

ond and third effects have ambiguous implications for welfare, the first effect, which we call

the Darwinian effect, always increases welfare regardless of the shape of demand curves.

We non-parametrically calibrate demand curves with data from Belgian manufacturing

firms and quantify our results. We find that mild increasing returns at the micro level can

catalyze large increasing returns at the macro level. Between 70–90% of increasing returns

to scale come from improvements in how a larger market allocates resources. The lion’s

share of these gains are due to the Darwinian effect, which increases the aggregate markup

and concentrates sales and employment in high-markup firms. This has implications for

policy: an entry subsidy, which harnesses Darwinian reallocations, can improve welfare

even when there is more entry than in the first-best.
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1 Introduction

Aggregate increasing returns to scale are at the core of some of the most fundamental issues in
economics, ranging from the mechanics of growth, to the gains from trade, to the benefits from
industrial and competition policy. Broadly speaking, there are two reasons why efficiency may
increase as markets get larger. The first has to do with the technological features of production.
If firms have increasing returns to scale, say due to fixed costs, then expanding the market will
improve efficiency since fixed costs will be spread over a larger number of units produced. The
second has to do with how resources are allocated in equilibrium. If competition intensifies in
a bigger market, then perhaps this can reallocate resources in a way that improves aggregate
efficiency. For example, Pavcnik (2002), Trefler (2004), and Mayer et al. (2014) document that
as market size increases, resources are reallocated to high-performing firms and products.

In this paper, we propose a framework for decomposing these effects theoretically and
quantitatively. We consider an economy with fixed entry and overhead costs, entry and exit,
monopolistic competition, and heterogeneous markups. We argue that, to a large extent,
increasing returns to scale at the aggregate level may reflect changes in allocative rather than
technical efficiency. That is, a large share of the gains from an increase in market size—
say due to immigration, fertility, or globalization—arise from how intensified competition
reallocates resources across firms. Furthermore, we show that even mild increasing returns
at the micro level (measured by the average ratio of marginal to average cost) can catalyze
large increasing returns at the macro level.1 Our findings hinge on the fact that we relax the
popular constant-elasticity-of-substitution (CES) assumption.2

Models of monopolistic competition and entry commonly feature CES demand due to its
tractability. The classic reference is Melitz (2003), which is a workhorse model of reallocation.
However, since the equilibrium in this model is efficient, reallocations have no first-order
effect on welfare. This is because efficiency ensures that the marginal social benefit of any
input is equated across competing uses. Hence, reshuffling resources across uses cannot raise
welfare. Moreover, efficiency also implies that micro- and macro-level returns to scale must
be the same since, on the margin, allocating all incremental inputs to a single firm must yield
the same aggregate return as the equilibrium allocation.

This simple elegance of CES demand comes at the expense of realism. CES demand
imposes constant markups in both the cross-section and the time-series with complete pass-
through of marginal costs into prices. In contrast, the data feature substantial heterogeneity in
both markups and pass-throughs. Matching the empirical heterogeneity of markups and pass-
throughs requires deviating from CES. This, in turn, introduces distortions in the equilibrium

1See Basu and Fernald (1997) on how aggregation can amplify micro returns to scale in distorted economies.
2We are not the first to consider deviations from CES in models of free entry and monopolistic competition.

We discuss how our approach and findings differ from other papers that relax CES below.
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and opens the door for reallocations triggered by shocks to primitives to affect welfare.
We relax CES by using a generalized homothetic demand system introduced by Matsuyama

and Ushchev (2017).3 This allows us to depart from Melitz (2003) in two ways. First, we allow
each firm’s price elasticity to vary with its position on its demand curve. Second, and in
contrast to most existing studies (e.g. Zhelobodko et al. 2012 and Dhingra and Morrow
2019), we allow firms to face differently shaped residual demand curves and to have different
overhead costs. This added flexibility is useful for matching data, but, more importantly, it
allows us to cleanly isolate different channels of reallocation using special cases.

We characterize how welfare changes in response to an increase in market size. The re-
sponse of welfare consists of a change in technical efficiency (i.e., an increase in welfare holding
the allocation of resources across uses constant) and a change in allocative efficiency due to
endogenous reallocations. We decompose these reallocations into three distinct channels that
we call (1) the Darwinian effect, (2) the selection effect, and (3) the pro/anti-competitive effect.
We briefly discuss these effects.

The Darwinian effect (1) captures how firms with different price-elasticities are differ-
entially affected by changes in the aggregate price index holding fixed their markups. To
understand this effect, consider the loglinearized per-capita demand curve for variety θ:

d log yθ = −σθ
[
d log pθ − d log P

]
− d log P,

where yθ is quantity, pθ is the price, σθ is the price elasticity, P is a market-level price index,
and per-capita spending is the numeraire. When the market expands and new firms enter,
the market-level price index P falls and intensifies competition for all firms. However, not
all varieties are exposed in the same way. Varieties with more inelastic demand are relatively
insulated from changes in the price index.

Holding markups constant, firms with relatively inelastic demand thus expand relative
to firms with more elastic demand. Since the markup of each firm is inversely related to its
demand elasticity, this means that high-markup firms expand relative to low-markup firms.
From a social perspective, high-markup firms are too small relative to low-markup firms in
the initial equilibrium. Hence, this effect always improves efficiency regardless of the shape
of demand curves. We call this the Darwinian effect because a more competitive environment
automatically selects and expands the “fittest” firms (those with the higher markups).

In contrast, the selection and pro/anti-competitive effect, which have been studied in detail
in previous work, have theoretically ambiguous effects on welfare. The selection effect (2)
results from the fact that, as the market expands, the minimum level of profitability a firm

3The preferences we use, which Matsuyama and Ushchev (2017) call homothetic with a single aggregator
(HSA), nest CES, separable translog, and linear expenditure shares as special cases. We also derive our results
using generalized Kimball (1995) preferences. The results are similar both qualitatively and quantitatively. We
discuss this extension in Section 8.
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must have to survive can change. This mechanism is important in models with overhead
costs and is emphasized by Asplund and Nocke (2006), Melitz and Ottaviano (2008), Corcos
et al. (2012), and Melitz and Redding (2015), among others.4 As pointed out by Dhingra and
Morrow (2019), whether or not the selection effect increases or reduces welfare is ambiguous.
A toughening of the selection cutoff improves welfare only if the consumer surplus generated
by the marginal variety relative to its sales is less than the average.5

Lastly, the pro/anti-competitive effect (3) results from the fact that firms’ markups may
change as the market expands. Of the three channels, the pro/anti-competitive effect is the
sole change in allocative efficiency arising in homogeneous firm models such as Krugman
(1979). If firms have incomplete pass-through, as is the case considered by Krugman (1979),
then as the price index falls due to an increase in market size, firms cut their markups (pro-
competitive effect). Recent studies exploring the pro/anti-competitive effect include Edmond
et al. (2015), De Loecker et al. (2016), Feenstra and Weinstein (2017), Feenstra (2018), Arkolakis
et al. (2019), and Matsuyama and Ushchev (2020b). We show that whether these changes in
markups raise or lower welfare is also ambiguous.

Together, these three channels describe how an increase in market size affects allocative
efficiency. To assess the importance of these channels, we develop a strategy for taking the
model to data. Using cross-sectional firm-level information from Belgium on pass-throughs
(from Amiti et al., 2019), we non-parametrically solve for the shape of the residual demand
curve that can exactly rationalize the distributions of firm sales and pass-throughs. We then
use our calibrated model to quantify the role reallocations play in aggregate returns to scale.

In our quantitative calibration, we find that changes in allocative efficiency are much more
important than changes in technical efficiency in determining aggregate increasing returns to
scale. They account for between 70% and 90% of the overall effect. As a result, mild increasing
returns to scale at the microeconomic level can be associated with large increasing returns to
scale at the aggregate level. Furthermore, the selection and pro-competitive effects are either
quantitatively unimportant or harmful. Instead, the Darwinian mechanism contributes the
lion’s share of the gains in allocative efficiency. The Darwinian effect also leads to an increase
in the aggregate markup, an increase in quasi-rents, and a decrease in production labor’s
share of income. In our quantitative calibration, we find that these Darwinian reallocations
concentrate a greater share of employment and sales in high-markup firms, tying the benefits

4In the absence of overhead costs, an increase in market size may still lead to a change in the selection cutoff
if there is a choke price. However, this change in the cutoffwill have no first-order effect on welfare because the
consumer surplus from marginal varieties is zero at the cutoff.

5As we discuss in detail in the body of the paper, the selection and Darwinian effect are different. When a
variety exits or enters, due to a change in the selection cutoff, consumers lose or gain all the inframarginal surplus
that variety generates. However, when a variety shrinks or expands, due to the Darwinian effect, consumers
lose or gain only on the margin. We show that the welfare effect of the former depends on the area under the
demand curve whereas the latter depends on the elasticity of the demand curve.
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of a market expansion to increases in concentration.6

These reallocative forces also have implications for policy. In particular, we show that a
marginal entry subsidy may improve welfare even when entry is above the first-best. This is
a consequence of the general theory of the second best (Lipsey and Lancaster, 1956)— since
all optimality conditions cannot be satisfied, the second-best involves changing the amount
of entry away from its first-best value. In our calibration, we find that subsidizing entry
above the first-best level is desirable since entry triggers Darwinian reallocations that alleviate
cross-sectional misallocation.

Many of the ideas that we develop regarding the response of the economy to changes
in market size apply to changes in other parameters and to other demand systems. In the
appendix, we provide analytical results for how welfare responds to changes in entry and
overhead costs. We also show how the results change, qualitatively and quantitatively, if we
use a generalization of Kimball (1995) preferences instead.

Related Literature. This paper builds on a large literature that considers how changes in
market size affect entry, competition, and welfare. We adopt a framework with monopolistic
competition and a representative consumer with a taste for variety, following Spence (1976)
and Dixit and Stiglitz (1977).

The first analyses of how market size affect welfare assume that firms are homogeneous,
such as Krugman (1979), Mankiw and Whinston (1986), Vives (2001), or Venables (1985). For
example, Krugman (1979) shows that, in an economy with homogeneous firms, an increase in
market size affects welfare through two channels: the entry of new varieties, and the decrease
in markups as the relative share of each variety in total consumption falls. Chaney and Ossa
(2013) enrich this result to show that improvements in within-firm productivity (as measured
by average cost) can additionally arise from a greater division of labor. This line of research
has also been extended by Bilbiie et al. (2012) and Bilbiie et al. (2019) to a dynamic context,
and by Matsuyama and Ushchev (2020b) for more general classes of homothetic preferences.

The heterogeneous firm case has been studied by Melitz (2003) when efficient, and by As-
plund and Nocke (2006), Melitz and Ottaviano (2008), Epifani and Gancia (2011), Zhelobodko
et al. (2012), Melitz and Redding (2015), Edmond et al. (2018), Dhingra and Morrow (2019),
Mrázová and Neary (2017, 2019), and Arkolakis et al. (2019) when inefficient. We highlight
how our approach differs from a few of the most recent contributions in this literature.

Dhingra and Morrow (2019) compare the gains from an increase in market size in an
economy with heterogeneous firms compared to an economy with homogeneous firms un-

6Baqaee and Farhi (2019) show that this type of reallocation—a reallocation from low-markup firms to high-
markup firms—can explain a significant fraction of aggregate TFP growth in the US over the last two decades.
De Loecker et al. (2020), Kehrig and Vincent (2021), and Autor et al. (2020) document a similar reallocation of
market share to high-markup and high-revenue-productivity firms over time. Our paper raises the possibility
that increases in scale, perhaps driven by globalization, could be responsible for these reallocations.
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der (non-homothetic) directly additive preferences. They show that certain restrictions on
demand are sufficient for gains in a heterogeneous firm economy to be greater.7 We instead
decompose the change in welfare into different margins of adjustment (entry, exit, and changes
in markups). This allows us to isolate the Darwinian effect, which can be signed without re-
strictions on the shape of demand curves. In addition, we use a homothetic demand system
and allow for multiple sources of exogenous heterogeneity besides physical productivity.

Mrázová and Neary (2019) show that when markups are increasing in quantity, an increase
in scale increases the profits of large firms — an effect they call the “Matthew Effect.” While
their focus on firm profits is different from our focus on consumer welfare, we show that the
Darwinian effect leads to a reallocation of employment and market share to high-markup firms.
In our quantitative application, markups and firm size are positively related and increases in
market size raise market concentration consistent with Mrázová and Neary (2019).8

Arkolakis et al. (2019) explore pro-competitive effects in an open economy with an export
margin following shocks to iceberg trade costs. They find that pro-competitive effects on
welfare are zero when preferences are homothetic and mildly reduce, rather than increase,
welfare for important classes of non-homothetic preferences. In their model, the absence of
fixed costs of accessing domestic and foreign markets means that the creation and destruction
of “cutoff” goods has no first-order effects on welfare. Moreover, the mass of firms that choose
to enter is not affected by changes in iceberg costs. This means that their model does not feature
the selection or Darwinian effects. In our model, firms incur overhead costs to operate and
the mass of entrants changes in response to changes in the size of the market; as a result, none
of the three effects (Darwinian, selection, and pro-competitive) are generically zero following
a change in market size. Nevertheless, our findings on the pro-competitive effects of scale
accord with Arkolakis et al. (2019): in our calibration, we find that adjustments on the markup
margin are small in magnitude and mildly reduce, rather than enhance, welfare.

Finally, compared to previous work, we provide a new strategy for calibrating our non-
parametric model. Using this strategy, we quantify the importance of the Darwinian, selection,
and pro-competitive channels. Our approach offers significant advantages compared to cali-
brating an off-the-shelf functional form, since common parametric specifications are unable to
match important features of the data and this matters for counterfactuals.9 Our non-parametric

7The condition is that the markup is monotonically increasing and the elasticity of utility is monotoni-
cally decreasing in quantity. Alternatively, gains in a heterogeneous-firm economy are also greater than in
a homogeneous-firm economy if instead the markup is decreasing and elasticity of utility is increasing with
quantity, if the product of price elasticities and pass-throughs is also increasing in quantity.

8We provide more discussion in Footnote 30 after we present our formal results.
9For example, two common alternatives to CES are symmetric translog (Feenstra and Weinstein 2017) and

Klenow and Willis (2016). Symmetric translog preferences impose that pass-throughs start at 0.5 for the smallest
firms and increase with firm size, which is at odds with the data (see, e.g., Figure 2a). Klenow and Willis (2016)
preferences cannot simultaneously match the distributions of pass-throughs and markups (see Appendix N).
The failure of these popular functional forms to match the data on sales, markups, and pass-throughs implies
that comparative statics with respect to market size calculated under these functional forms are not correct.
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demand system, which can simultaneously match a realistic sales, markup, and pass-through
distribution can be used for other quantitative applications, and we provide standalone code
for evaluating this demand system on our websites.

Structure of the paper. The structure of the rest of the paper is as follows. Section 2 sets up
the model and defines the equilibrium. Section 3 decomposes changes in welfare into changes
in technical and allocative efficiency and introduces sufficient statistics that we use to state
our results. Section 4 shows how welfare responds to an increase in market size and isolates
the role of certain reallocations using special cases. Section 5 draws out the implications of
these reallocations for how welfare responds to a tax or subsidy on entry. Section 6 introduces
a calibration strategy allowing us to take the model to the data non-parametrically. Section 7
is a quantitative application. Section 8 summarizes extensions, and Section 9 concludes. The
appendix contains all the proofs.

2 Model Setup

In this section, we specify the households’ and firms’ problems and define the equilibrium.

Households. There is a population of L identical consumers. Each consumer supplies one
unit of labor and has homothetic preferences over varieties of final goods indexed by a type
θ. The expenditure share of each variety of type θ is

pθyθ
I
= sθ(

pθ
P

), (1)

where yθ is the per-capita consumption of the variety, pθ is its price, I is per-capita income,
P is a price aggregator, and sθ(·) is a decreasing function. The price aggregator P is defined
implicitly by the requirement that expenditure shares sum to one. That is,∫

Θ

sθ(
pθ
P

)dF(θ) = 1, (2)

where the setΘ contains all potential types, and dF(θ) is a measure of varieties of type θ.10 We
return to the definitions of Θ and dF(θ) with more precision when we discuss the firm side of
the economy below.

Consumers maximize money-metric per-person utility Y subject to their budget constraint.
Define PY to be the ideal price index and let per-capita income be the numeraire so that

10We assume that sθ(x) is strictly decreasing when sθ(x) > 0. We also assume that limx→0 sθ(x) = ∞ and
limx→∞ sθ(x) = 0. These conditions guarantee that demand curves for each variety are downward sloping and
that the demand system described can be rationalized by a monotone, convex, continuous, and homothetic
rational preference relation (see Matsuyama and Ushchev 2017).
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PYY = I = 1.11 CES preferences are a special case of equation (1) when sθ(x) = s(x) = x1−σ.
These preferences also nest separable translog and linear expenditure shares as special cases.12

The appeal of these preferences is that, by choosing sθ, we can match residual expenditure
functions of any desired (downward-sloping) shape. Furthermore, since sθ can vary by θ,
different varieties can face different residual demand curves.

Equation (1) also makes clear that the demand for a variety is determined by the ratio of
its price, pθ, to the price aggregator, P. Hence, the price aggregator P mediates competition
between each variety and all other available goods. Outside of the CES special case, the price
aggregator P is distinct from the ideal price index PY.13 Whereas P is the price aggregator that
disciplines expenditure switching, PY is the price aggregator that matters for welfare.

Firms. Each firm supplies a single variety and seeks to maximize profits under monopolistic
competition similar to the production structure in Melitz (2003).14 To enter, firms incur a fixed
entry cost of fe units of labor. Upon entry, firms draw their type θ ∈ [0, 1] from a distribution
with density g(θ) and cumulative distribution function G(θ). Having drawn its type, each
firm then decides whether to produce or to exit. Production requires paying an overhead cost
of fo,θ units of labor and a constant marginal cost of 1/Aθ units of labor per unit of the good
produced. Finally, the firm decides what price to set, taking as given its residual demand
curve. We allow the firm’s residual demand curve (controlled by sθ), overhead cost fo,θ, and
productivity Aθ to vary with the firm’s type θ.

From (1), the price-elasticity of demand facing a variety of type θ, denoted σθ, is given by

σθ(
p
P

) = −
∂ log yθ
∂ log pθ

= 1 −
p
Ps′θ( p

P )

sθ( p
P )
. (3)

Conditional on operating, a firm of type θ will set its price equal to a markup µθ times its
marginal cost 1/Aθ. The profit-maximizing markup is given by the usual Lerner formula,15

µθ(
p
P

) =
1

1 − 1
σθ( p

P )

. (4)

To ensure that each firm’s profit-maximizing price is unique, we assume restrictions on sθ such
11Matsuyama and Ushchev (2017) show that under (1) and (2), the ideal price index PY is related to the price

aggregator P by log PY = log P −
∫
Θ

[∫
∞

pθ/P
(sθ(ξ)/ξ)dξ

]
dF(θ).

12Kimball (1995) preferences are an alternative way to generalize CES preferences while maintaining homo-
theticity. We discuss how our results change if we use these preferences instead in Section 8.

13See Matsuyama and Ushchev (2017) for a proof.
14For an extension with oligopolistic competition, see Appendix K.
15In our model, firms set markups to maximize static profits. A rich literature describes why consumption

habits, financial frictions, customer acquisition costs, or other factors may lead firms to set markups that differ
from their static profit-maximizing markups (see e.g., Ravn et al. 2006, Gilchrist et al. 2017, Johnson and Myatt
2006). Since our objective is to compare long-run steady states, we abstract from these considerations.
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that marginal revenue curves are strictly downward sloping.16 When preferences are CES,
firms have constant and symmetric price-elasticities of demand σθ = σ, and hence markups
µθ = σ/(σ − 1) are constant in the cross-section and time-series. The generalized preferences
we consider instead allow firms’ markups to vary with type θ and relative prices pθ/P.

Since yθ is the per-capita output of the firm, the firm’s total output is Lyθ. A firm of
type θ chooses to produce if, and only if, its total variable profits exceed its overhead cost of
production, i.e.,

Lpθyθ

(
1 −

1
µθ

)
≥ fo,θ. (5)

Denote the ratio of variable profits to overhead costs by

Xθ =
Lpθyθ

fo,θ

(
1 −

1
µθ

)
,

and assume that firm types are ordered so that profitability Xθ is strictly increasing and
continuously differentiable in θ ∈ [0, 1].17 Define θ∗ to be the infimum of the set {θ ∈ [0, 1] :
Xθ ≥ 1}. Firms with types θ ≥ θ∗ decide to produce, since variable profits for these firms
exceed overhead costs, and firms of type θ < θ∗ do not produce and exit.

Following Melitz (2003), we assume no discounting and suppose that each firm faces an
exogenous probability∆ of being forced to exit each period. Free entry implies that firms enter
until expected lifetime variable profits minus overhead costs are equal to the entry cost:

1
∆

∫ 1

θ∗

[
Lpθyθ

(
1 −

1
µθ

)
− fo,θ

]
g(θ)dθ ≥ fe. (6)

The set of operating firms, and hence varieties available to the representative consumer, is
{θ ∈ [0, 1] : θ ≥ θ∗}. The measure of firms of type θ is given by dF(θ) = Mg(θ)1(θ≥θ∗)dθ, where
M is the mass of entrants and 1 is an indicator function.

Equilibrium. Consumers maximize utility taking prices as given, firms maximize profits
taking other prices as given, and markets clear. The equilibrium is determined by equations
(1), (2), (4), (5), and (6).

16In terms of primitives, we assume that xs′′θ (x) <
[

xs′θ(x)
sθ(x) − 1

]
s′θ (x) for all x and all θ.

17We require firm types to be one-dimensional so that there is a one-to-one mapping from typeθ to profitability
Xθ and thus a single cutoff type θ∗. In terms of primitives, firms are ordered such that −σθρθ

∂ logµθ
∂θ +

(
σθ
ρθ
− 1

)
∂ log Aθ

∂θ −

∂ log fo,θ
∂θ > 0, where ρθ is the pass-through function defined in terms of primitives by (7). In the absence of overhead

costs, we do not need to order types by profitability, and hence firm types could instead be multi-dimensional.
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Notation. Denote the sales share density by

λθ = (1 − G(θ∗))Mpθyθ.

This is a density because it is always non-negative and integrates to one.18 For two variables
xθ ≥ 0 and zθ, denote the x-weighted average of zθ by

Ex[zθ] =

∫ 1

θ∗
xθzθg(θ)dθ∫ 1

θ∗
xθg(θ)dθ

.

Denote the x-weighted covariance of any two variables wθ and zθ by

Covx[wθ, zθ] = Ex[wθzθ] − Ex[wθ]Ex[zθ].

Finally, denote the aggregate markup—the ratio of total sales to total variable costs—by µ̄.
The aggregate markup is equal to the sales-weighted harmonic average of firm markups,

µ̄ = Eλ
[
µ−1
θ

]−1
.

3 Central Concepts

In this section, we introduce some central concepts that will guide our analysis. First, we
introduce statistics related to the shape of the demand curve that help characterize welfare
changes. Second, we discuss how welfare is determined in terms of some intuitive, but
endogenous, variables. Third, we describe the distortions in the decentralized equilibrium
and show how reallocations affect welfare. We build on the definitions in this section to prove
our main results in Sections 4 and 5.

3.1 Pass-Throughs and Consumer Surplus Ratios

To characterize changes in welfare, we introduce two statistics related to the shape of demand
curves. We define the pass-through of a variety as the elasticity of its price to its marginal cost.
A firm’s pass-through can be expressed as a function of primitives,

ρθ(
p
P

) =
∂ log pθ
∂ log mcθ

= 1 +
∂ logµθ
∂ log mcθ

=
1

1 −
p
Pµ
′

θ
( p

P )

µθ( p
P )

, (7)

18Since M is the mass of entrants and θ∗ is the selection cutoff, (1−G(θ∗))M is the mass of surviving firms and
this integrates to one from the budget constraint.
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where the markup function is given by (4). Under CES preferences, firms’ markups are
constant, and hence firms exhibit “complete pass-through” (ρθ = 1). In general, however, a
firm’s desired markup may vary with its position on the demand curve. For example, if a
firm’s desired markup is decreasing in its price, the firm exhibits “incomplete pass-through”
(µ′θ( p

P ) < 0 and thus ρθ < 1). This is sometimes referred to as Marshall’s second law of demand.
Denote the ratio of the area under the demand curve to sales for each variety by δθ. That

is,

δθ =

∫ yθ
0

pθ(y)dy

pθyθ
= 1 +

∫
∞

pθ/P
sθ(ξ)
ξ dξ

sθ( p
P )

, (8)

where pθ(y) is the inverse residual demand curve for variety θ. Figure 1 illustrates that
δθ = (A + B)/A, where B is consumer surplus and A is revenues for variety θ. We call δθ the
consumer surplus ratio. Naturally, the consumer surplus ratio δθ ≥ 1 for all θ. In a CES model,
δθ measures the “love-of-variety” effect and is equal to σ/(σ − 1).19 In general, δθ is a function
of both the variety’s type θ and its location on its demand curve (determined by pθ/P).

Quantity

P
ri
ce

p
θ

y
θ

A

B

Figure 1: Graphical illustration of δθ as the area under the residual demand curve divided by
revenues. That is δθ = (A + B)/A ≥ 1.

3.2 Welfare

We are interested in how per-capita welfare responds to changes in market size. To a first-order,
this is

d log Y = (Eλ[δθ] − 1) d log M︸                   ︷︷                   ︸
Consumer surplus

from entry of new varieties

− (δθ∗ − 1)λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗︸                         ︷︷                         ︸

Consumer surplus loss
from exit of varieties dθ∗

− Eλ
[
d log pθ

]
︸         ︷︷         ︸
Marginal surplus

from price changes

. (9)

19As noted by Spence (1976) and Mankiw and Whinston (1986), firms may not appropriate the entire surplus
they generate for consumers. In our model, δθ also measures the degree of “non-appropriability”: as δθ increases,
the firm captures a smaller portion of the surplus it generates for consumers in revenues. This concept is important
because firms’ willingness to pay the entry cost depends on the fraction of surplus they can appropriate. The
“degree of preference for variety” defined by Vives (2001) in his model of directly additive preferences is
proportional to 1− 1/δθ. The elasticity of utility defined by Dhingra and Morrow (2019) is proportional to 1/δθ.
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Intuitively, welfare changes d log Y incorporate the consumer surplus brought about by the
entry of new varieties d log M or destroyed by the exit of varieties dθ∗ via the first two terms
on the right-hand side of (9). The final term is Shephard’s lemma and captures how changes
in prices of continuing varieties affect the consumer. If the model did not allow creation and
destruction of varieties, then the first two terms of (9) would be zero and changes in welfare
would simply be the sales-weighted average change in prices.

One can also interpret Y as a measure of productivity (aggregate output per worker). This
welfare-relevant notion of productivity, which we study and decompose, is different to another
notion of “productivity” studied, for example, by Baily et al. (1992), Olley and Pakes (1996),
Foster et al. (2001) and Melitz and Polanec (2015). In that literature, changes in aggregate
productivity are proxied using changes in an index defined as a weighted average of firm
productivity levels, e.g., Ā = Eλ[Aθ]. Changes in this index are given by

d log Ā = λθ∗
(
1 −

Aθ∗

Ā

) g(θ∗)
1 − G(θ∗)

dθ∗ + Covλ
[Aθ

Ā
, d logλθ

]
+ Eλ[d log Aθ]. (10)

Comparing (10) to (9) reveals important differences. Increases in Ā cannot be interpreted as
improvements in efficiency. For example, even starting from an optimal point, a reallocation
that moves sales from low-Aθ to high-Aθ firms raises Ā, contradicting the optimality of the
initial point. Furthermore, as pointed out by Petrin and Levinsohn (2012) and Baqaee and
Farhi (2019), these statistical decompositions can detect “improvements” in Ā even in cases
where reallocations actually reduce welfare and aggregate output.

3.3 Sources of Inefficiency

An allocation is inefficient if welfare can be increased by reallocating labor between entry,
overhead, and variable production while keeping the total amount of labor fixed. There are
three margins along which the allocation can be inefficient in this model: (1) entry can be
excessive or insufficient; (2) selection can be too tough or too weak; (3) the cross-sectional
allocation of labor across variable production may be distorted. We discuss these three
different kinds of inefficiency in turn and show that each can be characterized with simple
conditions on the statistics presented above.

In what follows, we define local efficiency for each margin. That is, whether a marginal
reallocation along some dimension improves or decreases welfare. This is distinct from global
efficiency which compares the allocation to the first-best allocation. These local notions of
efficiency are the ones that are relevant for understanding how reallocations affect welfare on
the margin in the decentralized equilibrium.
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Entry efficiency. Consider a marginal reallocation that reduces variable production labor and
increases entry and overhead labor, keeping the selection cutoff and the relative allocation
of labor across varieties constant. If this perturbation raises welfare, we say that entry is
insufficient. If the opposite holds, we say that entry is excessive.

Lemma 1 (Excessive/Insufficient Entry). Entry is insufficient if, and only if,

µ̄ < Eλ[δθ]. (11)

If this inequality is reversed, entry is excessive.

In words, there is too little entry if the aggregate markup is less than the sales-weighted
average consumer surplus ratio. Intuitively, raising entry by one percent raises welfare
according to Eλ[δθ], but reduces variable production per variety (and hence welfare) by µ̄
percent.20 In a CES model, (11) holds as an equality and so the CES model has efficient entry.

Selection efficiency. We say that selection is too weak if marginally increasing the selection
cutoff—and reallocating the labor from those newly exiting varieties proportionately to entry,
overhead, and variable production—increases welfare.

Lemma 2 (Tough/Weak Selection). Selection is too weak if, and only if,

δθ∗ < Eλ[δθ]. (12)

If this inequality is reversed, selection is too tough.

Suppose that the selection cutoff θ∗ increases. If the consumer surplus associated with the
marginal variety δθ∗ is lower than the average Eλ[δθ], the welfare associated with new varieties
created from the freed-up labor outweighs the welfare loss from the exiting varieties. Since
the increase in the selection cutoff is welfare-improving, in this case, we say that selection was
initially too weak.

If the inequality in (12) is reversed, then an increase in the selection cutoff dθ∗ > 0 reduces
efficiency and welfare. Therefore, tougher selection and the exit of marginally profitable firms
is not, ipso facto, evidence that efficiency is rising. In a CES model, (12) holds as an equality
and so the CES model has efficient exit.

20Equivalently, Lemma 1 can be understood through the lens of the non-appropriability and business stealing
externalities discussed by Mankiw and Whinston (1986). A marginal entrant generates consumer surplus over
and above the revenues it captures, on average by Eλ[δθ] − 1, but causes all existing firms to contract output,
resulting in an aggregate loss of profits equal to µ̄ − 1. If µ̄ − 1 < Eλ[δθ] − 1, the additional consumer surplus
generated by the marginal entrant dominates the business stealing externality, and entry is insufficient.

12



Relative production efficiency. Finally, we say that the amount of variable labor dedicated
to the production of one variety is too high compared to another if, on the margin, welfare
increases when variable labor is reallocated from the former to the latter.

Lemma 3 (Cross-section misallocation). Variable labor of variety θ′ is too high compared to that of
variety θ if, and only if,

µθ′ < µθ. (13)

Intuitively, firms with higher markups are inefficiently small in the cross-section compared
to firms with lower markups. Hence, reallocating labor from a low-markup firm to a high-
markup firm increases allocative efficiency.21 Crucially, it is a comparison of markups µθ, and
not productivities Aθ, that determines whether or not one firm should be larger than another
from a social perspective. If markups happen to be positively associated with productivity,
then an expansion of more productive firms increases welfare, but this is only because “high
productivity” proxies for “high markup.”22 In a CES model, (13) holds as an equality and so
the CES model has an efficient cross-sectional allocation of resources.

Note that correcting relative size inefficiencies is distinct from choosing whether marginally
profitable firms should operate. For example, suppose the marginally profitable firm is a mom-
and-pop store with markup µθ∗ and consumer surplus ratio δθ∗ . If µθ∗ is less than average
(µθ∗ < µ̄), then a planner can raise welfare by moving variable production labor from θ∗ to
the rest of the economy. However, this does not mean that shutting down the mom-and-pop
store is beneficial. In fact, if δθ∗ > Eλ[δθ], then shutting down the mom-and-pop store results
in a greater loss in welfare than the gain from using those resources for new entry.

That is, Lemma 3 shows that the welfare effect of marginally expanding and shrinking
firms involves a comparison of their markups, whereas Lemma 1 shows that the welfare effect
of shutting down and starting firms depends on a comparison of their consumer surplus
ratios.

21In reality, there may be other distortions that make it sub-optimal to reallocate resources to high-markup
firms. For example, suppose firms that charge high markups also receive subsidies on inputs (e.g., by lobbying
public officials). If these subsidies are large enough, then on net these high-markup firms are too large relative
to other firms, and reallocating more resources to them is harmful for welfare. In our model, this is not the
case because all firms buy inputs at the same price and sell directly to households, and markups are the only
distortionary wedges in the economy that vary across firms. Even in more complex models with input-output
linkages, Baqaee and Farhi (2019) show that reallocating resources to more distorted parts of the economy, taking
distortions along the entire supply chain into account, improves efficiency.

22In general, the level of Aθ is irrelevant for whether a reallocation improves or worsens efficiency. This
contrasts with statistical decompositions, like the one in (10), which consider a reallocation towards firms with
higher levels of productivity Aθ as improving efficiency. See Section 3.2.

13



4 Changes in Market Size

In this section, we characterize how an increase in market size, L, affects welfare. We also
consider how statistics like the aggregate markup and real GDP respond to an increase in
market size.23 As in Krugman (1979), one can think of an increase in L as capturing the effect
of trade integration of symmetric economies. Suppose we have N countries with identical
tastes and technologies, with populations L1,L2, ...,LN. The market equilibrium if these N
countries trade freely is the same as the market equilibrium in a single, closed economy with
size L1 + L2 + ... + LN; hence, comparative statics of the equilibrium with respect to L can be
interpreted as the effect of opening to trade with symmetric foreign markets.

4.1 Decomposition into Technical and Allocative Efficiency

As noted by Helpman and Krugman (1985), reallocations associated with increased competi-
tion can mitigate or exacerbate pre-existing distortions. To understand these reallocations, we
decompose welfare changes into changes due to technical and allocative efficiency. Changes in
technical efficiency capture the direct impact of the shock, holding the allocation of resources
constant. Changes in allocative efficiency capture the indirect impact of the shock resulting
from endogenous reallocations triggered by the shock.24

Following Baqaee and Farhi (2019), let the allocation vector X capture the share of labor
allocated to entry, overhead, and variable production of each variety. For any L, every feasible
allocation is described by some X. Let Y(L,X) be the associated level of consumer welfare.
Our analysis decomposes changes in welfare into changes in technical and allocative efficiency
as

d log Y =
∂ logY
∂ log L

d log L︸           ︷︷           ︸
technical efficiency

(i.e., holding X fixed)

+
∂ logY
∂X

dX
d log L

d log L.︸                      ︷︷                      ︸
allocative efficiency

(i.e., due to reallocations)

(14)

At the efficient allocation, the envelope theorem implies that changes in allocative efficiency
are zero to a first-order. Inefficiencies in the initial allocation open the door for reallocations to
have first-order effects on welfare. Hence, in the general case, our model will feature changes
in both technical and allocative efficiency following an increase in market size.25

23Although we focus on changes in market size in the body of the paper, in Appendix H we show that similar
results can be derived for changes in overhead and entry costs.

24Our notion of allocative efficiency compares changes in welfare due to reallocations against a benchmark
where the allocation of resources is held constant. A different notion of allocative efficiency measures changes
in the distance to the efficient frontier. Changes in that measure of allocative efficiency depend on an extra term,
which is how fast the efficient frontier moves when market size changes. See Appendix F.2 for a derivation.

25Appendix F explicitly characterizes ∂ logY/∂X and dX/d log L separately. Our Theorem 1, below, follows
from combining these formulas as in Equation (14).
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4.2 Welfare and Changes in Market Size

We characterize the change in welfare following an exogenous change in market size.

Theorem 1 (Welfare Effect of Change in Market Size). In response to changes in population d log L,
changes in consumer welfare per capita are

d log Y =
(
Eλ[δθ] − 1

)
d log L︸                  ︷︷                  ︸

technical efficiency

+
(
ξϵ + ξθ

∗

+ ξµ
)
µ̄ d log L,︸                        ︷︷                        ︸

allocative efficiency

(15)

where

(Darwinian Effect) ξϵ = (Eλ[δθ] − 1) Covλ

[
σθ,

1
µθ

]
≥ 0,

(Selection Effect) ξθ
∗

= (Eλ[δθ] − δθ∗)λθ∗γθ∗
(
Eλ

[
σθ∗

σθ

]
− 1

)
⋚ 0,

(Pro/Anti-competitive Effect) ξµ = Eλ
[(

1 − ρθ
)
σθ

(
1 −

Eλ[δθ]
µθ

)]
Eλ

[ 1
σθ

]
⋚ 0,

and γθ∗ > 0 is the hazard rate of the profitability distribution Xθ at the selection cutoff. That is,
γθ∗ = g(θ∗)/(1 − G(θ∗))(∂ logθ/∂ log X).26

Equation (15) decomposes the change in welfare into a technical and allocative efficiency
effect according to the definition in (14). We start by discussing the technical efficiency term
before discussing the allocative efficiency term.

The first term in Equation (15) captures changes in technical efficiency: the welfare gains
from an increase in market size holding the proportional allocation of resources across uses
(entry, overhead, and variable production) fixed. Because the fraction of labor allocated to
entry is held fixed, the increase in population implies a proportional increase in entry. This
has two offsetting effects. On the one hand, the new varieties increase consumer welfare
by Eλ[δθ]d log L, since the consumer’s surplus associated with the new varieties will average
to Eλ[δθ]. On the other hand, the increase in the number of varieties reduces the per-capita
consumption of existing varieties by d log L. The net effect balances these two offsetting effects.
Since δθ ≥ 1, the technical efficiency term is always positive. In a CES model, this is the only
effect.

The second term in (15) captures changes in allocative efficiency: the welfare gains due
to changes in the allocation of resources. Each of ξϵ, ξθ∗ , and ξµ relates to a particular type

26In terms of primitives, this is

1
γθ∗
=

1 − G(θ∗)
g(θ∗)

[
∂ log Xθ

∂θ

∣∣∣∣∣
θ∗

]
=

1 − G(θ∗)
g(θ∗)

[
−σθ
ρθ

∂ logµθ
∂θ

+

(
σθ
ρθ
− 1

)
∂ log Aθ

∂θ
−
∂ log fo,θ
∂θ

∣∣∣∣∣∣
θ∗

]
.

15



of reallocation. In fact, the general equilibrium response can be analyzed as a series of
three successive allocations, each of which allows firms to adjust along a greater number
of margins.27 In the first restricted allocation, we allow free entry, but hold markups and
the selection cutoff constant (i.e., µθ and θ∗ are fixed using implicit taxes). The change in
welfare in this allocation is the same as in Theorem 1, but setting ξθ∗ = ξµ = 0. In the second
allocation, firms can also change their decision to operate but still cannot alter their markups.
The change in welfare in this allocation is equal to Theorem 1, but setting ξµ = 0. Finally, the
third allocation allows firms to adjust on all three margins: entry, exit, and choice of markup.

To fix ideas, we consider three special cases, each of which isolates and focuses on the
intuition for a different margin of adjustment.

Darwinian Effect. To isolate the role of the Darwinian effect, consider an economy in which
there are no overhead costs ( fo,θ = 0) so that θ∗ = 0. Furthermore, assume that preferences are
given by28

sθ(
pθ
P

) =
(pθ

P

)1−σθ
. (16)

In this example, markups can vary in the cross-section of firms because µθ =
σθ
σθ−1 , but markups

for each type θ are constant and pass-though is complete (ρθ = 1). The fact that markups do
not change means that there is no pro-competitive effect, ξµ = 0, and the fact that there are no
overhead costs means that there is no selection effect, ξθ∗ = 0. Hence, we have the following.

Corollary 1 (Darwinian Effect). When preferences are given by (16) and overhead costs are zero, the
change in welfare from an increase in market size is given by

d log Y =
(
Eλ[δθ] − 1

)
d log L︸                  ︷︷                  ︸

technical efficiency

+ ξϵµ̄ d log L,︸       ︷︷       ︸
allocative efficiency

Changes in allocative efficiency are strictly positive (ξϵ > 0) as long as there is any hetero-
geneity in price elasticities (and therefore markups):

ξϵ = (Eλ[δθ] − 1)Covλ

[
σθ,

1
µθ

]
= −(Eλ[δθ] − 1)Covλ

[
σθ,

1
σθ

]
≥ 0. (17)

In other words, the Darwinian effect is unambiguously positive regardless of the shape of
demand curves and does not depend on whether entry is excessive or insufficient.

27The decomposition in Theorem 1 is different to the one provided by Dhingra and Morrow (2019). We
focus on how welfare is affected by different margins of adjustment. Dhingra and Morrow (2019) instead
decompose gains from an increase in market size into those present in homogeneous versus heterogeneous firm
models. The quantity reallocations they isolate, for example, group together Darwinian effects with effects due
to heterogeneous pass-throughs, and cannot be signed without assumptions on the shape of demand.

28These preferences were introduced by Matsuyama and Ushchev (2020a). They refer to these as “constant-
price-elasticity” preferences. When the σθ parameter is uniform across firm types, this collapses to CES.
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To understand this effect, note that the change in the per-capita quantity of each variety
depends on the price-elasticity of demand and its price relative to the price index:

d log yθ = −σθd log pθ + (σθ − 1)d log P = (σθ − 1)d log P.

The second equality follows from the fact that in this example d log pθ = d logµθ = 0. Consider
how an increase in market size affects demand for this firm. As explained in the introduction,
an increase in market size and the entry of new firms causes the price aggregator to fall d log P <
0. The reduction in the price aggregator triggers bigger reductions in per-capita quantities
for firms that face more elastic demand. The result is that low-markup firms (who have
high price-elasticities of demand) shrink more than high-markup firms (who have low price-
elasticities). By Lemma 3, high-markup firms were initially too small relative to low-markup
firms, so this reallocation reduces relative productive inefficiencies and improves welfare. We
call this a Darwinian effect because a more competitive environment, from a reduction in the
price index, shifts resources towards the “fittest” firms (those with higher markups and more
inelastic demand).29 The (Eλ[δθ] − 1) in (17) appears because the reallocations caused by the
Darwinian effect save on labor, and these extra resources are funneled into additional entry.30

Selection Effect. We now relax the assumption of zero overhead costs, while retaining the
constant markups and complete pass-throughs of the previous example. As a result, we
reintroduce a source of allocative efficiency changes due to changes in the selection cutoff
(ξθ∗), but continue to hold ξµ = 0.

Corollary 2 (Darwinian and Selection Effect). When preferences are given by (16) and overhead
costs are nonzero, the change in welfare from an increase in market size is given by

d log Y =
(
Eλ[δθ] − 1

)
d log L︸                  ︷︷                  ︸

technical efficiency

+
(
ξϵ + ξθ

∗
)
µ̄ d log L,︸                 ︷︷                 ︸

allocative efficiency

Whilst the Darwinian effect is always positive, changes in the selection cutoff will only
increase welfare if

ξθ
∗

= (Eλ[δθ] − δθ∗)λθ∗γθ∗
(
Eλ

[
σθ∗

σθ

]
− 1

)
≥ 0.

29Appendix M discusses conditions under which the Darwinian effect persists when we depart from the
specific assumptions of our model.

30Mrázová and Neary (2019) show that when Marshall’s second law holds (markups are increasing in size
or, equivalently, demand curves are log-concave), an increase in scale increases the profits of large firms (which
they term the “Matthew Effect”). The Darwinian effect we isolate concerns the reallocation of employment,
not profits, which is the welfare-relevant reallocation. Furthermore, we show that this reallocation is welfare-
increasing regardless of whether Marshall’s second law holds. For example, the demand curves generated by
(16) are log-linear. In fact, if the demand curve is log-convex, even though it still increases welfare, the Darwinian
effect becomes an “anti”-Matthew effect because it reallocates labor to small, rather than large, firms.
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This happens, for example, if consumer surplus ratio at the cutoff δθ∗ is lower than average
Eλ[δθ], and the price elasticity σθ∗ is higher than average Eλ[σθ]. The second condition ensures
that the selection cutoff increases in response to an increase in market size since marginal firms
are more exposed to competition than the average firm, and the first condition ensures that
the exit of marginal firms is beneficial since selection was too weak to begin with (following
Lemma 2).

As discussed above, an increase in the selection cutoff, dθ∗ > 0, is not, on its own, evidence
of an improvement in allocative efficiency, unless the marginal firm provides households with
less consumer surplus than reallocating that labor to entry and other surviving firms. Indeed,
in our quantitative application in Section 7, we find that increases in the selection cutoff are
welfare-reducing.

Pro/Anti-Competitive Effect. In our third and final example, we turn off the Darwinian
and selection effects by considering an economy with homogeneous firms. In this example,
reallocations are driven purely by the fact that firms change their markups in response to
changes in market size.

Corollary 3 (Pro/Anti-competitive effect). Suppose that all varieties face the same residual demand
curve sθ(·) = s(·), overhead cost fo,θ = fo, and productivity Aθ = 1. The change in welfare from an
increase in market size is given by

d log Y =
(
δ − 1

)
d log L︸          ︷︷          ︸

technical efficiency

+ ξµµ d log L,︸       ︷︷       ︸
allocative efficiency

Homogeneity of firms implies that ξϵ = ξθ∗ = 0 and that ξµ simplifies to

ξµ = (1 − ρ)
(
1 −

δ
µ

)
. (18)

If firms exhibit incomplete pass-through (ρ < 1), the allocative effects of markup adjustments
are welfare-enhancing if, and only if, there is initially too much entry (µ > δ). Intuitively, the
increase in market size causes the price aggregator to fall, and this causes markups to decrease
if ρ < 1. A reduction in markups deters entry, which is beneficial if entry was excessive to
begin with (following Lemma 1).

The literature typically refers to the idea that markups may fall with market size as the
pro-competitive effect of scale. In this example, the pro-competitive effect is captured entirely
by ρ < 1: markups decrease since each firm’s price rises relative to the aggregate price index.
As (18) makes clear, the welfare impact of these pro-competitive effects then depends on the
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initial efficiency of entry.31

4.3 Response of Other Variables

We finish this section by characterizing how a change in market size affects two other quantities
of interest—the aggregate markup and real GDP.

Aggregate Markup and Income Shares. An increase in market size changes the aggregate
markup for both within-firm and between-firm reasons. In this model, the share of income
earned by production labor is inversely related to the aggregate markup 1/µ̄. The remainder
of income, 1 − 1/µ̄, is variable profits dissipated by the costs of entry (i.e. quasi-rents).
Proposition 1 characterizes the change in the aggregate markup, and hence the share of
income going to variable profits, following a change in market size.

Proposition 1 (Aggregate Markup Effect of Change in Market Size). In response to changes in
population d log L, changes in the aggregate markup are

d log µ̄ =
(
ζϵ + ζθ

∗

+ ζµ
)
µ̄ d log L,

where

(Darwinian Effect) ζϵ =
(
µ̄ − 1

)
Covλ

[
σθ,

1
µθ

]
≥ 0,

(Selection Effect) ζθ
∗

= λθ∗γθ∗

(
µ̄

µθ∗
− 1

) (
Eλ

[
σθ∗

σθ

]
− 1

)
≥ 0,

(Pro-competitive Effect) ζµ = −Eλ
[
µ̄ − 1
σθ

]
Eλ

[
(σθ − 1)

(
1 − ρθ

)]
≤ 0, if ρθ ≤ 1.

The change in the aggregate markup is composed of three distinct effects that are familiar
from our discussion of changes in allocative efficiency above. First, increased entry causes
a reallocation toward high-markup firms (the Darwinian effect), which always increases the
aggregate markup. Second, changes in market size affect the exit cutoff (the selection effect).
The selection effect also increases the aggregate markup because either the cutoff firm’s elas-
ticity is higher than average and markup is lower than average—which means an increase
in market size toughens selection and causes the exit of low-markup firms—or the cutoff
firm’s elasticity is lower than average and markup is higher than average—in which case an
increase in market size weakens selection and leads the market to retain more high-markup

31This discussion is closely related to the contemporaneous findings from Matsuyama and Ushchev (2020b),
who show that if entry is globally pro-competitive, then entry is excessive in models with homogeneous firms.
When there is cross-sectional heterogeneity, the effect of the pro-competitive effect is complicated by cross-
sectional misallocation. We discuss this in more detail in Footnote 40.
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firms. The Darwinian and selection effects are mitigated by the third effect, which captures
firms’ markup adjustments (the pro-competitive effect). The pro-competitive effect always
decreases the aggregate markup when pass-through is incomplete (ρθ < 1), since incomplete
pass-through leads firms to adjust their markups downward as the aggregate price index falls.

Whether an increase in market size leads to an increase in the aggregate markup on net
depends on whether the Darwinian and selection effects outweigh the pro-competitive effect.
If firms are homogeneous, then only the pro-competitive effect remains, and an increase
in market size will lead to a decrease in the aggregate markup. In our calibrated model,
the Darwinian and selection effects dominate and the aggregate markup increases when the
market becomes larger.

Real GDP. Statistical agencies calculate real GDP using the change in prices for varieties
present before and after a change. This means that product entry and exit are ignored in the
computation of real GDP (see e.g., Aghion et al. 2019).

Proposition 2 (Real GDP Effect of Change in Market Size). In response to changes in population
d log L, changes in real GDP per capita are

d log Q = −Eλ[d log pθ] = Eλ
[
1 − ρθ

]
Eλ

[ 1
σθ

]
µ̄d log L.

The first equation shows that changes in real GDP are equal to the last term in (9). Hence,
changes in real GDP and welfare coincide only if there is no consumer surplus from entry
and exit.32 The second equation shows that when pass-throughs are incomplete (ρθ < 1), an
increase in market size leads to a reduction in markups and hence an increase in measured
real GDP per capita. On the other hand, if pass-throughs are complete (as in Corollaries 1
and 2), real GDP per capita is invariant to market size, even though welfare increases as the
market expands. Hence, measured real GDP may provide a poor description of how welfare
changes with market size.

5 Policy Interventions

In this section, we consider the implications of our results for policy. Section 3.3 discussed
the three margins along which the decentralized allocation can be distorted—entry ineffi-
ciency, selection inefficiency, and relative production inefficiencies. The policy that obtains

32For example, welfare and real GDP coincide in the absence of fixed and entry costs, where goods enter
and exit according to a choke price. If goods enter and exit smoothly from a choke price (as in Arkolakis
et al. 2019, for example), then δθ = 1 for all entrants and exiters, so the first two terms in (9) are zero. Our
decomposition of efficiency in (9) does not impose these restrictions. This also separates the decomposition in
(9) from decompositions that do not capture how entering/exiting varieties affect welfare, such as Petrin and
Levinsohn (2012) and Baqaee and Farhi (2019).
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the first-best allocation eliminates all three types of distortion. However, achieving the first-
best requires at least as many policy instruments as there are firm types, since the first-best
eliminates variation in markups across firm types. Moreover, the planner also needs to regu-
late selection by comparing consumer surplus at the cutoff against the average. Whereas such
extensive interventions in the market are impracticable, subsidizing entry is, in comparison,
straightforward.33

In this section, we consider how a marginal entry tax affects welfare, and show that an
entry tax can trigger similar reallocative forces to those in Theorem 1. The tax on entry, τ,
modifies the free entry condition given in (6), so that each entering firm now pays (1 + τ) fe

units of labor upon entry:

1
∆

∫ 1

θ∗

[(
1 −

1
µθ

)
pθyθwL − fo,θ

]
g(θ)dθ = (1 + τ) fe.

Revenues from the tax are rebated lump-sum to households.
For brevity, we include details of how these changes affect the system of equilibrium

conditions in Appendix E and continue now to the welfare result. Proposition 3 characterizes
the response of welfare to a tax on entry, starting from the point where entry is untaxed.

Proposition 3 (Welfare Effect of an Entry Tax). Suppose entry is initially untaxed (unsubsidized).
The response of welfare to a marginal tax on entry is given by

d log Y =
(
1 −

Eλ [δθ]
µ̄

−

[
ξϵ + ξθ

∗

+ ξµ + (Eλ[δθ] − δθ∗)λθ∗γθ∗
])
ψe dτ, (19)

where ψe = ∆ fe/
(
∆ fe + (1 − G(θ∗))E

[
fo,θ

])
is the entry cost share of all fixed costs, and ξϵ, ξθ∗ , and

ξµ are as defined in Theorem 1.

Whether an entry tax increases welfare depends on the sign of the term in parentheses in
(19). This term is more likely to be positive—and an entry tax is more likely to be welfare-
enhancing—if entry is excessive (Eλ[δθ] < µ̄), if selection is too tough (Eλ[δθ] < δθ∗), or if the
beneficial reallocations from entry given by ξϵ, ξθ∗ , and ξµ are small. We call −ξϵψedτ the
Darwinian effect of the entry tax, −(ξθ∗ + (Eλ[δθ] − δθ∗)λθ∗γθ∗)ψedτ the selection effect of the
entry tax, and −ξµψedτ the pro-competitive effect of the entry tax. Together with the welfare
effect due to the initial wedge on entry efficiency, (1 − Eλ[δθ]/µ̄)ψedτ, these forces sum to the
total effect of an entry tax on welfare.

An immediate implication of Proposition 3 is that excessive entry (as defined in Lemma 1)
is not a sufficient condition for an entry tax to be welfare-increasing. For example, if the
beneficial reallocations from entry (ξϵ + ξθ∗ + ξµ) are sufficiently large, then attempting to

33For more discussion of first-best policy, see Appendix G.1, where we characterize the policy that achieves
first-best and calculate the distance of the decentralized equilibrium to the efficient frontier.
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correct for excessive entry with an entry tax will actually be welfare-reducing because the
economy loses the beneficial cross-sectional reallocations associated with entry.

We illustrate this intuition by briefly discussing the welfare effect of the entry tax in the
three special cases from Section 4.

Darwinian effect. Consider again the economy in Corollary 1, where there are no overhead
costs and preferences are given by (16). In this example, the entry tax has no effect on firms’
markups or on selection.

Corollary 4 (Darwinian Effect). When preferences are given by (16) and overhead costs are zero, the
change in welfare from a marginal tax on entry is positive if, and only if,

Eλ [δθ] < (1 − ξϵ) µ̄.

Note that this condition is more stringent than the condition for excessive entry in Lemma 1,
since ξϵ > 0 in any economy with heterogeneous markups. Intuitively, since entry alleviates
relative production inefficiencies due to Darwinian reallocations, the welfare impact of an
entry tax may be negative if the loss of those Darwinian reallocations outweighs the benefits
of moving closer to the efficient level of entry.

Selection effect. Suppose we retain complete pass-through preferences, but now allow for
nonzero overhead costs, as in Corollary 2. The economy now features both Darwinian and
selection effects, but pro-/anti-competitive effects are still absent.

Corollary 5 (Darwinian and Selection Effect). When preferences are given by (16) and overhead
costs are nonzero, the change in welfare from a marginal tax on entry is positive if, and only if,

Eλ [δθ] <
(
1 − ξϵ − (Eλ [δθ] − δθ∗)λθ∗γθ∗Eλ

[
σθ∗

σθ

])
µ̄.

This condition is more stringent than the condition in Corollary 4 if selection is too weak
(δθ∗ < Eλ[δθ]), and less stringent if selection is too tough. Intuitively, an entry tax decreases
selection, which is only beneficial if the initial level of selection was too tough.

Pro/anti-competitive effect. Finally, consider an economy with homogeneous firms, as in
Corollary 3. In this economy, entry has no Darwinian or selection effects, since firms are
identical.

Corollary 6 (Pro/Anti-Competitive Effect). Suppose that all varieties face the same residual demand
curve sθ(·) = s(·), overhead cost fo,θ = fo, and productivity Aθ = 1. The change in welfare from a
marginal tax on entry is positive if, and only if, entry is excessive (i.e., δ < µ).
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Without firm heterogeneity, the entry margin is the sole source of potential inefficiency.
As a result, the change in welfare following an entry tax depends only on whether entry is
initially excessive or insufficient as in Lemma 1.

6 Calibration Strategy

In this section, we discuss how to map our model to data. We first show how data on firm
pass-throughs, sales, and exit rates can be used to calibrate the model, without imposing a
functional form on preferences or on the distribution of firm productivities. We then imple-
ment our approach using Belgian data and compare the calibrated model’s match to untargeted
moments. The demand system we calibrate is potentially useful for other applications, since it
can simultaneously match realistic pass-through, markup, and sales distributions. We provide
stand-alone code on our websites for evaluating our demand system. In Section 7, we use the
calibrated model to consider counterfactuals where we change market size or introduce an
entry tax, in line with our theoretical results.34

6.1 Non-Parametric Calibration Approach

The model has many degrees of freedom, so in order to take the model to data, we impose the
following restrictions on overhead costs fo,θ and expenditure share functions sθ.

Assumption 1. Firms have identical overhead costs fo,θ = fo, and expenditure share functions sθ take
the form,

sθ(
pθ
P

) = s(
1

Bθ

pθ
P

) = s(
1

AθBθ

µθ
P

), (20)

where Bθ are type-specific quality shifters.

Allowing for unobserved quality shifters Bθ is important since two firms that charge the
same price in the data can have very different sales. If there were no quality shifters, one
could identify s(·) by simply plotting price against sales in the cross-section. In practice, this
is untenable because the prices firms report are not directly comparable to each other.

Proposition 4 shows that we can identify types from observables under Assumption 1.

Proposition 4 (Identification of Firm Types). Suppose Assumption 1 holds. Then, sales λθ and
profitability Xθ are strictly increasing in the product of physical productivity and quality, AθBθ.
Furthermore, any two firms with identical sales also have identical pass-throughs ρθ, markups µθ, and
consumer surplus ratios δθ.

34To test the model, one would like to observe the response of an economy to exogenous shocks to market
size. In the absence of well-identified shocks to market size, our approach is to calibrate our model to match
micro-level moments and use the calibrated model to perform counterfactual exercises.
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The intuition for Proposition 4 follows from (20): since “quality-adjusted” prices pθ/Bθ are
strictly decreasing in AθBθ and pass-throughs are greater than zero, firm sales must be strictly
increasing in AθBθ.35 Moreover, since a higher AθBθ enlarges the quality-adjusted production
possibilities set, with constant overhead costs, profitability Xθ must also be increasing in AθBθ.

Proposition 4 implies that firms can be ordered by sales, profitability, and AθBθ interchange-
ably. Hence, we can identify firms’ types by their rank in the sales distribution. Accordingly,
we set each firm’s type to be the fraction of firms with less sales, so that the distribution of
types G(θ) is uniform over [0, 1].

Once we identify firms’ types, we can proceed to identify the sufficient statistics necessary
to calculate the comparative statics in Sections 4-5. Since pass-throughs are related to the
second derivative of the residual expenditure function s(·), we can solve a set of differential
equations to recover markups and consumer surplus ratios up to boundary conditions. Propo-
sition 5 shows how we calculate these statistics given data on the firms’ sales, pass-throughs,
exit rates by age, and values for the aggregate markup and average consumer surplus ratio.

Proposition 5 (Calibration of Sufficient Statistics). Suppose Assumption 1 holds. Given an ag-
gregate markup µ̄ and data on pass-throughs ρθ and sales λθ, markups are given by the solution
to

d logµθ
dθ

= (µθ − 1)
1 − ρθ
ρθ

d logλθ
dθ

s.t. Eλ[µ−1
θ ]−1 = µ̄. (21)

Given the above inputs and an average consumer surplus ratio δ̄, consumer surplus ratios are given by
the solution to

d log δθ
dθ

=
(µθ
δθ
− 1

) d logλθ
dθ

s.t. Eλ[δθ] = δ̄. (22)

Given firm exit rates by age, θ∗ is the difference between the first-year exit rate and the exit rate of mature
firms. The overhead cost is fo = λθ∗(1−1/µθ∗)/(1−θ∗), the entry cost is∆ fe = Eλ[1−1/µθ]−(1−θ∗) fo,
and the hazard rate of profitability at the cutoff is given by γθ∗ = ρθ∗/(1 − θ∗)(∂ logλθ/dθ|θ∗)−1.

The intuition for these results follows. First, to get (21), we start by writing the relationship
between marginal cost changes and changes in firms’ markups µθ and sales λθ:

d logµθ = (ρθ − 1) d log mcθ, and d logλθ = (1 − σθ)ρθ d log mcθ.

The first equation uses the fact that d log pθ = ρθd log mcθ, and the second equation uses the
fact that d log pθyθ = (1 − σθ)d log pθ.

Under Assumption 1, all firms face the same residual expenditure function (up to quality
shifters Bθ). Thus, we can use these same equations to characterize how markups and sales

35The condition in Footnote 16 guarantees that ρθ > 0 for all θ.
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change as we vary productivity/quality in the cross-section of firms:

d logµθ
dθ

= (1 − ρθ)
d log(AθBθ)

dθ
, and

d logλθ
dθ

=
ρθ

µθ − 1
d log(AθBθ)

dθ
.

Here, we use the fact that differences in quality across firms are isomorphic to differences in
physical productivity in terms of firms’ resulting markups and sales (as can be seen from (20)).
We do not need to identify physical productivity and quality separately, and we refer to their
product AθBθ as a variety’s productivity for simplicity. The second equation also uses the
Lerner condition to substitute σθ − 1 = 1/(µθ − 1).

Combining these two equations yields (21). Intuitively, the distribution of sales and the
distribution of pass-throughs govern the distribution of markups in the model. Incomplete
pass-through (ρθ < 1) in the data means that, as we increase a firm’s productivity (and hence
decrease its marginal cost), the firm’s markup increases. Thus, in the model, firms with higher
AθBθ have higher markups. The rate at which markups increase in the cross-section is pinned
down by the rate at which sales increase in the cross-section, since sales are monotonically
increasing in productivity. Once we solve for markups using (21), we can use either of the
differential equations that relate markups and sales to productivity to back out AθBθ with
boundary condition Aθ∗Bθ∗ , which we can normalize to one.

Next, the differential equation (22) for consumer surplus ratios can be derived by differenti-
ating (8). As a variety’s sales increase, the rate at which the total area under the demand curve
for that variety (δθλθ) increases is inversely related to the elasticity of the demand curve (in
particular, d(δθλθ) = µθdλθ). For example, when demand curves are locally perfectly elastic,
µθ = 1, the area under the demand curve increases one-for-one with sales. Combining this
with the product rule (λθdδθ = d(δθλθ)− δθdλθ) implies that consumer surplus ratios increase
with sales when µθ > δθ.

Finally, since G(θ∗) = θ∗ is the share of firms that exit upon realizing their type, we can
identify the cutoff type θ∗ by taking the difference between exit rates of entrants and mature
firms. Given the cutoff type θ∗, calculating the remaining statistics is straightforward: we can
normalize the initial mass of entrants M = 1 and market size L = 1 without loss, and calculate
overhead costs from the selection condition (5), entry costs from the free entry condition (6),
and the hazard rate of profitability from pass-throughs and the sales distribution.

Before moving forward, we discuss two features of the restrictions assumed in Proposi-
tion 5. First, the assumption that all firms lie on the same residual expenditure function (up
to quality shifters Bθ) means that pass-throughs in the time series, which capture how a firm
changes its markup if its marginal cost changes, are equal to cross-sectional pass-throughs,
which capture how firms’ markups vary with productivity/quality in the cross-section. This
restriction allows us to use data on pass-through of marginal cost to prices to calibrate how
firms’ markups vary in the cross-section. Second, as shown in Proposition 5, the restriction on
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residual expenditure functions in (20) implies a one-to-one mapping between firms’ sales and
markups. In the data, there is substantial heterogeneity in markups even conditional on size.
While (20) precludes this possibility, we relax this restriction by adding variation in markups
orthogonal to firm size in Appendix L.

Nevertheless, the preferences we calibrate are less constrained than previous work since
we do not use off-the-shelf functional forms for either demand curves or the distribution of
firm productivities. This means that we can match data on the distribution of firm sales and
pass-throughs by size exactly.36

6.2 Calibration Implementation

We implement Proposition 5 using data on firm pass-throughs, the distribution of firm sales,
and exit rates by firm age. We refer readers interested in a more detailed description of our
data sources to Appendix A.

Data sources. For pass-throughs ρθ, we use estimates of pass-throughs by firm size for
manufacturing firms in Belgium from Amiti et al. (2019). They use administrative firm-
product level data (Prodcom) from 1995–2007, which contains information on prices and
sales, collected by Statistics Belgium. Using exchange rate shocks as instruments for changes
in marginal cost, and controlling for changes in competitors’ prices, they identify partial
equilibrium pass-throughs by firm size under assumptions consistent with our model. Their
estimates are shown in Figure A.2 in Appendix A.

For sales λθ, we use the sales distribution for the universe of Belgian manufacturing firms
from VAT declarations. The cumulative sales share distribution is shown in Figure A.1 in
Appendix A.37,38

Finally, we use firm exit rates by age reported by Pugsley et al. (2018). The exit rate for
new entrants is about 15 percentage points higher than mature firms, so we set θ∗ = 0.15.

36In principle, one could alternatively use estimates of markupsµθ or consumer surplus ratios δθ in conjunction
with sales λθ to calibrate the model. We instead rely on pass-throughs since estimating markups and consumer
surplus ratios is more difficult, typically requiring production function estimation for markups and experimental
evidence for consumer surplus ratios. The downside is that calibrating the model using pass-throughs ρθ requires
outside information to pin down boundary conditions µ̄ and Eλ[δθ].

37The Prodcom sample used by Amiti et al. (2019) does not include firms with less than 1 million euros in
sales. Since Amiti et al. (2019) find that the average pass-through for the smallest 75% of firms in Prodcom is
0.97, when we merge their pass-through estimates with the firm sales distribution, we assume the smallest firm
has a pass-through of one and interpolate pass-throughs for the set of firms with sales under 1 million euros.

38In mapping the model to the data, we assume products sold by the same firm are perfect substitutes, so
each firm is a different variety. We could alternatively assume each product is a distinct variety. Appendix D
provides results using this assumption. The calibrated elasticities are different, but the overall message does not
change.
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Figure 2: Pass-throughs and sales share density as a function of firm type θ.

Boundary conditions. Our results require taking a stand on two boundary conditions: the
aggregate markup µ̄ and the average consumer surplus ratio Eλ[δθ]. Recent work estimating
markups of Prodcom firms by Forlani et al. (2022) finds an average markup of 1.091, so
we choose µ̄ = 1.09. We focus on two benchmark calibrations of Eλ[δθ]: (1) efficient entry
Eλ[δθ] = µ̄ (see Lemma 1), and (2) efficient selection Eλ[δθ] = δθ∗ (see Lemma 2).

In Appendix B, we show that the level of aggregate increasing returns to scale is sensitive
to the choice of µ̄, but the relative contributions of technical and allocative efficiency, and of
the Darwinian, selection, and pro-competitive effects, do not vary significantly with µ̄. For
completeness, in Appendix B we vary both Eλ[δθ] and µ̄ along a two-dimensional grid and
show that the results we report in the main text are representative of broader patterns.

Calibrated statistics. Figures 2a and 2b display pass-throughs, ρθ, and log sales, logλθ, as a
function of type θ. See Appendix A for details about how we construct these figures. Figure
2a shows that pass-throughs decrease from 1 for the smallest firms to about 0.3 for the largest
firms. Figure 2b shows that sales are initially increasing exponentially (linear in logs), but
become super-exponential towards the end reflecting a high degree of concentration in the
tail.

Figure 3a shows the results from solving the differential equation (21). Our calibrated
markups are increasing and convex in log productivity. While the average markup level is
pinned down by our choice of µ̄, the distribution of markups is not targeted. Nevertheless, the
markups we back out are consistent with direct estimates. First, we find that markups range
from close to one to about 1.7 for the largest firms. This range of markups is broadly consistent
with previous estimates of firm markups by De Loecker et al. (2020), Ridder et al. (2021), and
Forlani et al. (2022).39 If we used Klenow and Willis (2016) preferences instead (and continued

39Using the production function approach to estimate markups for French manufacturing firms, Ridder et al.
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Figure 3: Markups and consumer surplus ratios with µ̄ = 1.090.

to match the distribution of pass-throughs from Amiti et al. 2019), we would instead estimate
markups on the order of 100 for large firms (as opposed to 1.7 in our calibration; see Appendix
N for more detail). Second, our calibrated markups are positively correlated with firm output
and sales. This positive covariance between markups and firm size is consistent with evidence
from Burstein et al. (2020), Ridder et al. (2021), and De Loecker et al. (2016).

Figure 3b shows the distribution of log productivity/unobserved quality. As with the sales
density, the productivity density is also initially exponential, and becomes super exponential
in the tail. Since price elasticities are decreasing in θ, productivity has to change by more than
sales in the cross-section to allow firms to get large. Figures 3c and 3d show the consumer
surplus ratio δθ for the efficient selection case (δθ∗ = Eλ[δθ]) and the efficient entry case

(2021) find that 10th percentile of firm markups is between 0.91–0.97 and the 90th percentile of firm markups
is between 1.36–2.97. Similarly, Forlani et al. (2022) (using Belgian manufacturing firms) and De Loecker et al.
(2020) (using public U.S. firms) find that the majority of firm markups are between 1 and 2.
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(µ̄ = Eλ[δθ]). Figure B.1 in Appendix B plots the residual demand curve and shows that it has
a distinctly non-isoelastic shape, indicating substantial departures from CES.

7 Quantitative Results

In this section, we use the calibrated model to calculate how changes in market size and a
marginal tax on entry affect welfare. We decompose welfare gains into changes in technical
and allocative efficiency—i.e., gains holding the allocation of resources fixed and gains due
to the reallocation of resources—and further decompose allocative efficiency changes into the
Darwinian, selection, and pro-competitive margins. As extensions, we compare macro and
micro returns to scale and illustrate how increases in market size affect industrial concentration.

Welfare effect of a market expansion. Table 1 reports the elasticity of consumer welfare to
market size, following Theorem 1. The response of welfare is decomposed into changes due to
technical efficiency and allocative efficiency, and the allocative effect is further disaggregated
into the Darwinian, selection, and pro-competitive effects.

Efficient selection Efficient entry
Eλ[δθ] = δθ∗ Eλ[δθ] = µ̄

Welfare: d log Y 0.259 0.278
Technical efficiency 0.033 0.090
Allocative efficiency 0.225 0.188

Darwinian effect 0.235 0.631
Selection effect 0.000 -0.344
Pro-competitive effect -0.010 -0.099

Real GDP per capita 0.043 0.043
Aggregate markup 0.494 0.494

Table 1: The elasticity of welfare, real GDP per capita, and aggregate markup to population.

We start by discussing the case with efficient selection first (Eλ[δθ] = δθ∗). The elasticity of
per-capita consumer welfare to population is 0.259. Only around a tenth of the overall effect
is due to the technical efficiency effect (0.033), while changes in allocative efficiency (0.225)
account for around nine-tenths of the overall effect. That is, the increase in market size brings
about substantial benefits from reallocation, and the gains from these improvements are much
larger than direct gains from technical efficiency.

The change in allocative efficiency from the Darwinian effect is large and positive at
0.235. The selection and pro-competitive effects are insignificant in comparison. The change
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in allocative efficiency from the selection effect is zero by construction, since the surplus
associated with exiting varieties is equal to the average consumer surplus. The change in
allocative efficiency from the pro-competitive effect is slightly negative at −0.010.40

The elasticity of real GDP per capita is much smaller than the elasticity of welfare to market
size at 0.043. Changes in real GDP only reflect the decrease in markups of continuing varieties
due to the pro-competitive effect and do not capture changes in consumer surplus due to entry
and exit.

The aggregate markup increases with market size. Recall from the discussion of Propo-
sition 1 that whether the aggregate markup increases depends on whether the Darwinian
effect and the selection effect, which both increase the aggregate markup, dominate the pro-
competitive effect, which reduces firms’ markups. In our calibration, the Darwinian effect
plays the dominant role in increasing the aggregate markup. Accordingly, the share of income
earned by production labor falls as market size grows.

Next, consider the case with efficient entry. The elasticity of welfare with respect to
population shocks is now slightly higher at 0.278. The technical efficiency effect is now 0.090,
reflecting the fact that Eλ[δθ] = µ̄ = 1.09. The allocative efficiency effect is still much more
important than the technical efficiency effect at 0.188.

The Darwinian effect is now much larger at 0.631. The main reason for the increase is
because (Eλ[δθ] − 1) is now 0.090 instead of 0.033. This implies that entry is more valuable.
Since the labor saved by the Darwinian effect is funneled into more entry, this makes the
Darwinian effect more beneficial. The selection effect is now non-zero and negative at −0.344.
The reason for this can be seen from Figure 3d, which shows that the consumer surplus ratio at
the cutoff is much higher than average. Hence, as the cutoff increases in response to toughening
competition, socially valuable firms are forced to exit. Finally, the pro-competitive effect is still
negative and larger in magnitude at −0.099. The pro-competitive effect is now more negative
because entry was initially excessive in the efficient selection case, so reductions in markups
had a beneficial effect on entry efficiency. Since we are now imposing entry efficiency, this

40To understand the pro-competitive effect, we rewrite ξµ as

ξµ =

(
1 −

Eλ[δθ]
µ̄

)
Eλ

[
1 − ρθ

]
︸                         ︷︷                         ︸

Effect on entry efficiency

+Eλ [δθ − 1]
(
Eλ

[ 1
σθ

]
Covλ

[
ρθ, σθ

]
− Eλ

[
1 − ρθ

]
Covλ

[
σθ,

1
µθ

])
︸                                                                            ︷︷                                                                            ︸

Effect on cross-sectional misallocation

.

The first term is similar to the procompetitive effect with homogeneous firms in Corollary 3 and captures the
fact that a larger market size leads firms to cut their markups (since ρθ < 1), which improves welfare when entry
is initially excessive. The second term is due to cross-sectional heterogeneity in markups. The first covariance
accounts for the fact that firms with different markups may cut their markups by different amounts, and is
positive if high-markup firms have lower pass-throughs (as in our calibration). The second covariance accounts
for the fact that, for a given change in prices, firms with high price elasticities and thus low markups expand
more than firms with low price elasticities, which exacerbates cross-sectional misallocation. In this empirical
calibration, this final covariance dominates the other terms. This is why the overall sign of the pro-competitive
effect is negative.
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effect no longer operates, and the overall contribution of changing markups to welfare is more
negative.

As mentioned when discussing our choice of boundary conditions above, the level of
aggregate increasing returns to scale is sensitive to our choice of the aggregate markup µ̄.
However, in Appendix B we show that the relative contributions of allocative and technical
efficiency to aggregate returns to scale are similar across values of µ̄ from 1.05 to 1.15. Moreover,
the Darwinian effect plays the dominant role in driving aggregate increasing returns across
the grid of boundary conditions we consider for µ̄ and Eλ[δθ].

How important can selection be? An important theme in the literature has been to empha-
size the role of the selection margin (increases in the productivity/quality cutoff) as a driver
of productivity and welfare gains. However, in our baseline results, the selection margin is
either neutral (when δθ∗ = Eλ[δθ]) or deleterious (when Eλ[δθ] = µ̄). One may wonder how
robust this finding is and how it depends on our choice of boundary conditions.

To answer this question, we consider a third possibility for boundary conditions. We set
δθ∗ = 1, which implies that the residual demand curve for infra-marginal firms is perfectly
horizontal. In other words, the marginal firms produce no excess consumer surplus for the
household. This maximizes the benefits of the selection margin for welfare.

The results, however, are quantitatively very similar to those in Table 1. Specifically, the
welfare effect is 0.259 with an allocative efficiency effect of 0.225. The contribution of the
selection effect is positive, but negligible, at 0.002, and the overwhelming force remains the
Darwinian effect (0.232). These results suggest that the role played by the selection margin is
not an anomaly resulting from our choice of initial conditions.

How important is heterogeneity? To emphasize the interaction of heterogeneity and inef-
ficiency, we compare our model to a model with homogeneous firms. We set firms’ pass-
through equal to the average (sales-weighted) pass-through in the data, and use the same
average markup and consumer surplus ratio as in Table 1. Table 2 shows the results.

δ = δθ∗ δ = µ

Welfare: d log Y 0.061 0.090
Technical efficiency 0.033 0.090
Allocative efficiency 0.027 0.000

Real GDP per capita 0.043 0.043
Average markup -0.043 -0.043

Table 2: The elasticity of welfare, real GDP per capita, and aggregate markup to population
for homogeneous firms.
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The most striking difference is that both the elasticity of welfare to market size and changes
in allocative efficiency are much smaller, due to the absence of the Darwinian effect. In a model
with homogeneous firms, the sole source of inefficiency comes from excessive or insufficient
entry (see Corollary 3). Thus, when entry is efficient (the second column), there are no changes
in allocative efficiency at all. Even when entry is not efficient, changes in allocative efficiency—
which are due solely to the pro-competitive effect—are fairly small. Moreover, since only the
pro-competitive effect remains, the homogeneous firm model predicts a falling, rather than
rising, aggregate markup when the market expands.

Are there larger increasing returns at the macro vs. micro levels? The micro returns to
scale is the ratio of average cost to marginal cost minus one, (acθ/mcθ − 1), where a value of
zero means constant returns to scale. The (harmonic) average of micro returns to scale across
surviving producers is thus 1/Eλ[1/(acθ/mcθ − 1)] = µ̄ − 1.

Hence, average micro returns to scale are µ̄ − 1 = 0.09. Increasing returns at the aggregate
level are much larger: between 0.259 and 0.278. This means that even small technological
increasing returns at the micro level can give rise to large increasing returns to scale at the
aggregate level. Once again, the interaction of inefficiency and heterogeneity is key. If the
economy were efficient, macro and micro returns would be identical, and if the economy had
homogeneous firms, the difference between macro and micro returns would be much smaller.

Implications for industrial concentration. Our results suggest that the beneficial realloca-
tions associated with a larger market may come hand-in-hand with increased concentration.
Figure 4 shows the Lorenz curve for the distribution of sales as the market size increases.41

Quantitatively, as the market expands, the concentration of sales rises.42

Furthermore, and more importantly from a welfare perspective, when markups covary
negatively with pass-throughs (which is the case in our calibration), then an increase in
market size always leads high-markup firms to expand in employment terms relative to low-
markup firms (see Appendix F equation 29). In fact, an increase in market size causes firms
with low price-elasticities and pass-throughs to expand even in per capita terms if σθρθ < 1.
This inequality also holds in our calibration for the very largest firms.

Welfare effect on an entry tax. Table 3 shows the effect of an entry tax on welfare using
Proposition 3. Note that resources are held fixed, so all changes in welfare arise from changes
in allocative efficiency. We decompose the change in welfare into the effect due to the initial

41To produce these figures, we compute the equilibrium allocation nonlinearly by solving a system of differ-
ential equations. See Appendix B for details.

42See recent work by Matsuyama and Ushchev (2022) who show that this is a generic phenomenon when pass-
throughs are decreasing in quantity. Figure B.3 in Appendix B also shows that the concentration of employment
rises with market size in our quantitative calibration.
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Figure 4: Each panel depicts the Lorenz curve for the sales distribution for different values of
the market size parameter L. The dotted red line indicates the line of perfect equality.

wedge on entry efficiency, and the Darwinian, selection, and pro-competitive effects of the
entry tax described in Proposition 3. The last row of the table re-computes the welfare effect
of an entry tax in a model with homogeneous firms calibrated to have a pass-through equal
to the average sales-weighted pass-through.

Efficient selection Efficient entry
Eλ[δθ] = δθ∗ Eλ[δθ] = µ̄

Welfare: d log Y -0.155 -0.161

Effect due to initial wedge on entry efficiency 0.052 0.000
Darwinian effect of entry tax -0.215 -0.579
Selection effect of entry tax 0.000 0.328
Pro-competitive effect of entry tax 0.009 0.091

Welfare with homog. firms 0.027 0.000

Table 3: Welfare effect of an entry tax, following Proposition 3.

For both choices of the boundary conditions, we find that the entry tax is welfare-reducing
(and an entry subsidy is welfare-enhancing). Since the tax reduces entry, the Darwinian
effect operates in reverse, as loosening competition reallocates resources to low-markup firms
and exacerbates misallocation. While the selection and pro-competitive effects are (weakly)
beneficial, losses due to Darwinian reallocations outweigh these benefits. In contrast, when
firm heterogeneity is excluded from the model, the entry tax is beneficial or has no effect.

These results suggest that a social planner can increase welfare by enacting an entry
subsidy. Notably, the Darwinian effects that constitute the entire gains from an entry subsidy
are absent in a model with homogeneous firms. Thus, ignoring firm heterogeneity would lead
us to recommend a tax (rather than a subsidy) on firm entry.
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8 Extensions

Before concluding, we describe some extensions of the basic framework.

Other generalizations of CES preferences. In Appendix I, we also derive our results using
a different generalization of CES preferences (called HDIA preferences by Matsuyama and
Ushchev, 2017). The Kimball (1995) demand system is a special case of these preferences.

Theorem 2 in Appendix I shows that the response of welfare to an increase in market size
under HDIA preferences is

d log Y =
(
Eλ[δθ] − 1

)
d log L︸                  ︷︷                  ︸

technical efficiency

+
ξϵ + ξθ

∗

+ ξµ

1 − ξϵ − ξθ∗ − ξµ

(
Eλ[δθ]

)
d log L︸                                    ︷︷                                    ︸

allocative efficiency

,

whereEλ[δθ], ξϵ, ξθ∗ , and ξµ are the same as in the main text. The change in allocative efficiency
under HDIA preferences features a multiplier effect. This is because these preferences have
an additional feedback loop between reductions in the price index P and increases in welfare
Y. Appendix I calibrates the HDIA model and shows that the elasticity of welfare to market
size under HDIA preferences is slightly larger than our results in the main text.

Nonlinear response. One might worry that the reallocative effects in our quantitative model
could peter out quickly if we kept increasing the size of the market. Table B.1 and Figure B.2
in Appendix B present nonlinear results and show that the forces identified for small shocks
by Theorem 1 continue to apply for large shocks.

Optimal policy and distance to the efficient frontier. In the main text, we focus exclusively
on comparative statics of the decentralized equilibrium. For completeness, in Appendix G, we
characterize the policy that implements the first-best. By numerically implementing the first-
best policy, we find that losses due to distortions in the decentralized equilibrium are between
5.9–7.2% depending on boundary conditions. Therefore, changes in allocative efficiency can
be large even when the decentralized equilibrium is not far from the frontier.

Proposition 6 in Appendix G also provides an analytical approximation of the distance
to the efficient frontier as we move away from the CES benchmark. We show that, to a
second-order, the distance to the frontier is given by

log
Yopt

Y
≈

1
2

(Eλ [δθ] − 1) Covλ

[
σθ, log

1
µθ

]
︸                                   ︷︷                                   ︸

Relative production inefficiency

+
1
2
Eλ [σθ]

(
Eλ [δθ]
µ̄

− 1
)2

︸                       ︷︷                       ︸
Entry inefficiency

+
1
2

(Eλ [δθ] − δθ∗)
2 λθ∗γθ∗

σθ∗

δθ∗︸                            ︷︷                            ︸
Selection inefficiency

.
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The three terms, which are all positive, correspond to how the three margins of inefficiency
(relative production, entry, and selection) contribute to overall misallocation.

Variation in markups and pass-throughs unrelated to size. In our calibration, we assume
that markups and pass-throughs vary only as a function of firm size. In practice, firms’
markups also vary for reasons unrelated to size. Appendix L shows how our results change
if there is variation in pass-throughs and price elasticities (and hence markups) unrelated to
size. We find that this additional variation strengthens the Darwinian effect. A back-of-the-
envelope exercise suggests that additional heterogeneity in markups does not significantly
change our results.

Chaney (2008) entry. In the main text, we assume there is an unbounded mass of potential
entrants that enter the market until expected profits equal the fixed cost of entry. In Appendix
J, we consider an alternative entry technology where the mass of potential entrants is finite and
proportional to population, as in Chaney (2008). We show that the Darwinian effect persists
in this version of the model.

9 Conclusion

In this paper, we analyze the origins of aggregate increasing returns to scale. We find that
changes in allocative efficiency—i.e., changes in welfare due to the reallocation of resources—
constitute the majority of gains from an increase in market size. That is, intensifying compe-
tition in a larger market reallocates resources across uses in a way that improves efficiency.

In particular, the lion’s share of efficiency gains come from a force we call the Darwinian
effect, which reallocates resources to high-markup firms and alleviates cross-sectional misal-
location. This effect is distinct from two forces often studied in the literature—an increase in
market size may toughen selection, and an increase in market size may lead firms to reduce
their markups—which we find are either minor or deleterious for welfare.

In addition to improving the cross-sectional allocation of resources, Darwinian reallo-
cations increase the economy’s aggregate markup, decrease the share of income earned by
production labor, and lead to an increased concentration of sales and employment in large
firms. In our calibrated model, an increase in market size improves efficiency precisely be-
cause it increases industrial concentration and redistributes resources to large, high-markup
firms. Our analysis raises the possibility that beneficial reallocations from globalization come
hand-in-hand with increases in concentration and aggregate markups.

35



References

Aghion, Philippe, Antonin Bergeaud, Timo Boppart, Peter J. Klenow, and Huiyu Li, “Miss-
ing growth from creative destruction,” American Economic Review, 2019, 109 (8), 2795–2822.

Amiti, Mary, Oleg Itskhoki, and Jozef Konings, “International Shocks, Variable Markups,
and Domestic Prices,” The Review of Economic Studies, 2019, 86 (6), 2356–2402.

Arkolakis, Costas, Arnaud Costinot, Dave Donaldson, and Andrés Rodrı́guez-Clare, “The
elusive pro-competitive effects of trade,” The Review of Economic Studies, 2019, 86 (1), 46–80.

Asplund, Marcus and Volker Nocke, “Firm turnover in imperfectly competitive markets,”
The Review of Economic Studies, 2006, 73 (2), 295–327.

Atkeson, Andrew and Ariel Burstein, “Pricing-to-market, trade costs, and international
relative prices,” American Economic Review, 2008, 98 (5), 1998–2031.

Autor, David, David Dorn, Lawrence F. Katz, Christina Patterson, and John Van Reenen,
“The Fall of the Labor Share and the Rise of Superstar Firms,” The Quarterly journal of
economics, 2020, 135 (2), 645–709.

Baily, Martin Neil, Charles Hulten, and David Campbell, “Productivity Dynamics in Man-
ufacturing Plants,” Brookings Papers on Economic Activity, 1992, 23, 187–267.

Baqaee, David Rezza and Emmanuel Farhi, “Productivity and Misallocation in General
Equilibrium.,” Technical Report, National Bureau of Economic Research 2019.
and , “Entry vs. Rents: Aggregation with Economies of Scale,” Technical Report 27140,

National Bureau of Economic Research 2020.
Basu, Susanto and John G. Fernald, “Returns to scale in US Production: Estimates and

Implications,” Journal of Political Economy, 1997, 105 (2), 249–283.
Bilbiie, Florin O, Fabio Ghironi, and Marc J Melitz, “Endogenous entry, product variety,

and business cycles,” Journal of Political Economy, 2012, 120 (2), 304–345.
, , and , “Monopoly power and endogenous product variety: Distortions and remedies,”
American Economic Journal: Macroeconomics, 2019, 11 (4), 140–74.

Burstein, Ariel and Gita Gopinath, “International prices and exchange rates,” Handbook of
International Economics, 2014, 4, 391–451.
, Vasco M. Carvalho, and Basile Grassi, “Bottom-up Markup Fluctuations,” Technical
Report 27958, National Bureau of Economic Research 2020.

Chaney, Thomas, “Distorted gravity: the intensive and extensive margins of international
trade,” American Economic Review, 2008, 98 (4), 1707–21.
and Ralph Ossa, “Market size, division of labor, and firm productivity,” Journal of Interna-

tional Economics, 2013, 90 (1), 177–180.
Corcos, Gregory, Massimo Del Gatto, Giordano Mion, and Gianmarco I. Ottaviano, “Pro-

ductivity and Firm Selection: Quantifying the ”New” Gains from Trade,” The Economic
Journal, 2012, 122 (561), 754–798.

36



Dhingra, Swati and John Morrow, “Monopolistic competition and optimum product diver-
sity under firm heterogeneity,” Journal of Political Economy, 2019, 127 (1), 196–232.

Dixit, Avinash K and Joseph E Stiglitz, “Monopolistic competition and optimum product
diversity,” The American economic review, 1977, 67 (3), 297–308.

Edmond, Chris, Virgiliu Midrigan, and Daniel Yi Xu, “Competition, markups, and the gains
from international trade,” American Economic Review, 2015, 105 (10), 3183–3221.
, , and , “How costly are markups?,” Technical Report, National Bureau of Economic
Research 2018.

Epifani, Paolo and Gino Gancia, “Trade, markup heterogeneity and misallocations,” Journal
of International Economics, 2011, 83 (1), 1–13.

Fally, Thibault, “Generalized separability and integrability: Consumer demand with a price
aggregator,” Journal of Economic Theory, 2022, 203 (105471).

Feenstra, Robert C., “Restoring the product variety and pro-competitive gains from trade
with heterogeneous firms and bounded productivity,” Journal of International Economics,
2018, 110, 16–27.
and David E. Weinstein, “Globalization, Markups, and US Welfare,” Journal of Political

Economy, 2017, 125 (4), 1040–1074.
Forlani, Emanuele, Ralf Martin, Giordano Mion, and Mirabelle Muuls, “Unraveling Firms:

Demand, Productivity and Markups Heterogeneity,” June 2022. Working paper.
Foster, Lucia, John C. Haltiwanger, and C. J. Krizan, New Developments in Productivity Analysis,

University of Chicago Press,
Gilchrist, Simon, Raphael Schoenle, Jae Sim, and Egon Zakrajšek, “Inflation dynamics
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Appendix A Details of Empirical Implementation

We use information from VAT declaration in Belgium for the year 2014 to recover the sales
distribution of Belgian manufacturers. Table A.1 displays the underlying data.

Number of employees Share of sales Share of Observations

1 0.004559 0.16668
2 0.00826 0.284539
3 0.014786 0.375336
5 0.022269 0.489659
10 0.043011 0.652879
20 0.076444 0.779734
30 0.111713 0.843161
50 0.163492 0.906204
75 0.198242 0.932729
100 0.231815 0.947413
200 0.325376 0.974629
300 0.386449 0.983547
400 0.449491 0.989237
500 0.486108 0.991927
600 0.655522 0.994311
1000 0.740656 0.997386
8000 0.970654 0.999923

Table A.1: Firm size distribution for manufacturing firms from VAT declarations in Belgium
for 2014.

With some abuse of notation, let θ ∈ [0, 1] be the fraction of observations up to some size.
Then the cumulative share of sales for firms up to some cutoff θ (i.e. the “Share of sales”
column in Table A.1) is defined as

Λ(θ) =
∫ θ

0
λ(x)dx,

where λ(θ) is the sales share density. We fit a smooth curve to Λ(θ) of the form exp(c0 + c1θ +

c2θc3), displayed in Figure A.1. Then, we compute the sales share density λ(θ), which is given
by

λ(θ) =
dΛ
dθ
.

For pass-throughs ρθ, Amiti et al. (2019) provide estimates of the average sales-weighted
pass-through (denoted by α) for Belgian manufacturing firms conditional on the firms being
smaller than a certain size as measured by their numbers of employees. These estimates are
based on information from Prodcom, which is a subsample of Belgian manufacturing firms.
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Inclusion in Prodcom requires that firms have sales above 1 million euros, which means that
the sample is not representative of all manufacturers. The estimates are in Table A.2.

No of employees Share of observations Share of employment Share of sales α

100 0.76313963 0.14761668 0.23096292 0.9719
200 0.85435725 0.22086396 0.33897530 0.8689
300 0.88848094 0.28832632 0.40832230 0.9295
400 0.92032149 0.33549505 0.48074553 0.8303
500 0.93746047 0.38345889 0.54008827 0.6091
600 0.94523549 0.41987701 0.58209142 0.6612
1000 0.96365488 0.52280162 0.66820585 0.6229
8000 0.99996915 0.99999999 0.99999174 0.6497

Table A.2: Estimates from Amiti et al. (2019).

Our objective is to infer the pass-through ρ as a function of firm size. With some abuse of
notation, let θ ∈ [0, 1] be the fraction of observations in Prodcom up to some sales value. Let
λP(θ) be the sales share density of Prodcom firms of type θ. We again compute λP(θ) by the
same method above, but using only the sample of firms in Prodcom.

The variable α(θ) satisfies

α(θ) =

∫ θ

0
λP(x)ρ(x)dx∫ θ

0
λP(x)dx

.

We fit a flexible spline function to α(θ), shown in Figure A.2. To recover the pass-throughs
ρ(θ), we write

dα
dθ
=
λP(θ)ρ(θ)∫ θ

0
λP(x)dx

−
λP(θ)∫ θ

0
λP(x)dx

α(θ).

Hence, we can recover the pass-through function via

ρ(θ) =

(∫ θ

0
λP(x)dx

)
λP(θ)

dα
dθ
+ α(θ).

Since we have λP(θ) and α(θ), we can solve for pass-throughs ρ(θ) as a function of the number
of employees.

Finally, we merge our pass-through information from Prodcom with the sales density
from VAT declarations by assuming that the pass-through of a firm with a given number of
employees in Prodcom is the same as it is in the bigger dataset. We then fit a smooth spline to
this pass-through data from [0, 1] assuming that the pass-through for the smallest firm is 1 and
declines monotonically from the smallest firm to the first observation (which is a pass-through
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of 0.97 for firms with 100 employees). Given a smooth curve for both λθ and ρθ we follow the
procedure outlined in Proposition 5, solving the differential equations numerically using the
Runge-Kutta algorithm on a large grid.
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Figure A.1: Cumulative sales share distribution. The blue dots are cumulative sales share for
firms smaller than the percentile given by the x-axis in Prodcom. The solid red line is a fitted
spline.
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Figure A.2: The blue dots are estimates from Amiti et al. (2019) of the average sales-weighted
pass-through by size percentile. The red line is a fitted spline.
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Appendix B Additional Tables and Figures

Figure B.1 plots the residual demand curve in linear and log-log terms under the calibration
with µ̄ = 1.09 and efficient selection. (The residual demand curves are qualitatively similar
under the efficient entry case.) As mentioned in the main text, Figure B.1a shows that our
estimate has a distinctly non-isoelastic shape, indicating substantial departures from CES.
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Figure B.1: Residual demand curve (quality-adjusted price against quantity) for the efficient
selection case with µ̄ = 1.09. The results for the efficient entry case are similar.

Figure B.2 shows the nonlinear response of welfare, and its decomposition following
Theorem 1, for non-infinitesimal changes in market size. We compute this decomposition
by numerically solving the system of ordinary differential equations in Appendix C and
cumulative (i.e. integrating) the first-order changes.

Figure B.2 shows cumulated changes in welfare and each channel for the calibration with
efficient selectionEλ[δθ] = δθ∗ . The first panel shows that even though their relative importance
decreases slightly with the size of the shock, changes in allocative efficiency continue to dwarf
changes in technical efficiency even for large shocks. The second panel shows that as the
population grows, changes in allocative efficiency due to the pro-competitive channel start to
account for a non-trivial part of overall changes in allocative efficiency. This happens because
as we increase population, the harmonic average of markups increases due to the Darwinian
effect. This means that entry becomes more excessive, and hence that reallocations triggered
by individual markup reductions improve allocative efficiency more.

Table B.1 reports the average elasticity of welfare and real GDP per capita to population for
a large shock ∆ log L = 0.5. To calculate the response of the model to large shocks, we use the
series of differential equations in Appendix C and cumulate over a series of changes starting
at the initial equilibrium. Although the model is far from being log-linear, the qualitative
conclusions are unchanged.
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Figure B.2: Decomposition of changes in welfare and allocative efficiency following Proposi-
tion 1, for large shocks. These graphs show the case with µ̄ = 1.09 and efficient selection.

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0 ∆logL= 0, Gini = 0.87

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0 ∆logL= 0.02, Gini = 0.9

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0 ∆logL= 0.04, Gini = 0.92

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0 ∆logL= 0.06, Gini = 0.94

Figure B.3: Each panel depicts the Lorenz curve for the employment distribution for different
values of the market size parameter L. The dotted red line indicates the line of perfect equality.

Figure 4 in the main text shows that, in our quantitative calibration, the concentration
of sales increases with market size. Figure B.3 plots Lorenz curves for the employment
distribution as we increase market size. The initial concentration of employment is lower than
that of sales (Gini coefficients of 0.87 versus 0.88) and rises as the market expands.

Tables B.2 and B.3 test the robustness of our results over a two-way grid of boundary
conditions for µ̄ and δθ∗ . In Table B.2, we report the response of welfare and changes in
allocative efficiency to market size, following Theorem 1, for different boundary conditions.
Although the magnitude of d log Y/d log L changes as we change the boundary conditions,
the contribution of allocative efficiency to the overall total is at least 50% of the overall effect.
Table B.3 breaks down the overall effect on allocative efficiency into the different margins
of adjustment (Darwinian, selection, and pro-competitive). The Darwinian effect is always
responsible for the bulk of the positive effect. As mentioned, for a given µ̄, the selection effect
is strongest when δθ∗ is lowest, but even for δθ∗ = 1, the selection effect is negligible.
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Efficient selection Efficient entry
Eλ[δθ] = δθ∗ Eλ[δθ] = µ̄

Welfare: ∆ log Y 0.206 0.199
Technical efficiency 0.051 0.065
Allocative efficiency 0.155 0.134

Darwinian effect 0.142 0.211
Selection effect 0.000 -0.065
Pro-competitive effect 0.012 -0.012

Real GDP per capita 0.097 0.097
Aggregate markup 0.153 0.153

Table B.1: The average elasticity of welfare and real GDP per capita to population for a large
shock ∆ log L = 0.5.

Table B.2: Change in log welfare and allocative efficiency for different boundary conditions

δθ∗

1 2 3 4 5 6 7 8 9 10

1.05 [0.137, 0.119] [0.141, 0.112] [0.144, 0.106] [0.148, 0.099] [0.151, 0.092] [0.155, 0.086] [0.158, 0.079] [0.162, 0.073] [0.165, 0.066] [0.169, 0.059]
1.06 [0.166, 0.145] [0.170, 0.138] [0.173, 0.131] [0.177, 0.125] [0.180, 0.118] [0.184, 0.111] [0.187, 0.105] [0.191, 0.098] [0.194, 0.091] [0.198, 0.085]
1.07 [0.196, 0.171] [0.200, 0.164] [0.203, 0.157] [0.207, 0.151] [0.210, 0.144] [0.214, 0.137] [0.217, 0.131] [0.221, 0.124] [0.224, 0.117] [0.228, 0.111]
1.08 [0.227, 0.198] [0.231, 0.191] [0.234, 0.184] [0.237, 0.178] [0.241, 0.171] [0.244, 0.164] [0.248, 0.158] [0.251, 0.151] [0.255, 0.144] [0.258, 0.138]
1.09 [0.259, 0.225] [0.262, 0.219] [0.265, 0.212] [0.269, 0.205] [0.272, 0.199] [0.276, 0.192] [0.279, 0.185] [0.283, 0.178] [0.286, 0.172] [0.290, 0.165]

µ̄ 1.10 [0.291, 0.254] [0.294, 0.247] [0.298, 0.240] [0.301, 0.234] [0.305, 0.227] [0.308, 0.220] [0.312, 0.213] [0.315, 0.207] [0.319, 0.200] [0.322, 0.193]
1.11 [0.324, 0.283] [0.328, 0.276] [0.331, 0.270] [0.334, 0.263] [0.338, 0.256] [0.341, 0.249] [0.345, 0.243] [0.348, 0.236] [0.352, 0.229] [0.355, 0.222]
1.12 [0.358, 0.313] [0.362, 0.307] [0.365, 0.300] [0.369, 0.293] [0.372, 0.286] [0.376, 0.279] [0.379, 0.273] [0.382, 0.266] [0.386, 0.259] [0.389, 0.252]
1.13 [0.394, 0.344] [0.397, 0.338] [0.401, 0.331] [0.404, 0.324] [0.407, 0.317] [0.411, 0.311] [0.414, 0.304] [0.418, 0.297] [0.421, 0.290] [0.424, 0.283]
1.14 [0.430, 0.377] [0.434, 0.370] [0.437, 0.363] [0.440, 0.356] [0.444, 0.349] [0.447, 0.343] [0.451, 0.336] [0.454, 0.329] [0.457, 0.322] [0.461, 0.315]
1.15 [0.468, 0.410] [0.471, 0.403] [0.475, 0.396] [0.478, 0.390] [0.481, 0.383] [0.485, 0.376] [0.488, 0.369] [0.492, 0.362] [0.495, 0.356] [0.498, 0.349]

Each cell reports [d log Y/d log L, d log Yalloc/d log L] for different boundary conditions. Each column is a different
value for the boundary condition δθ∗ and each row is a different aggregate markup µ̄. Cells that approximately
correspond to efficient selection are colored in blue and cells that approximately correspond to efficient entry are
colored in yellow. The bulk of the changes in welfare are due to reallocation effects.
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Table B.3: Change in allocative efficiency for different boundary conditions

δθ∗

1 3 5 7 9

1.05 [0.122, 0.001, -0.004] [0.259, -0.118, -0.035] [0.397, -0.238, -0.066] [0.534, -0.357, -0.098] [0.672, -0.477, -0.129]
1.06 [0.148, 0.001, -0.005] [0.287, -0.119, -0.036] [0.426, -0.240, -0.068] [0.565, -0.360, -0.100] [0.704, -0.481, -0.131]
1.07 [0.175, 0.002, -0.006] [0.315, -0.120, -0.038] [0.456, -0.242, -0.070] [0.596, -0.364, -0.101] [0.736, -0.485, -0.133]
1.08 [0.203, 0.002, -0.007] [0.345, -0.121, -0.039] [0.486, -0.244, -0.071] [0.628, -0.367, -0.104] [0.769, -0.490, -0.136]
1.09 [0.232, 0.002, -0.009] [0.375, -0.122, -0.041] [0.518, -0.246, -0.073] [0.661, -0.370, -0.106] [0.804, -0.494, -0.138]

µ̄ 1.10 [0.262, 0.002, -0.011] [0.406, -0.123, -0.043] [0.551, -0.248, -0.076] [0.695, -0.373, -0.108] [0.839, -0.498, -0.141]
1.11 [0.293, 0.003, -0.013] [0.439, -0.124, -0.045] [0.584, -0.250, -0.078] [0.730, -0.376, -0.111] [0.875, -0.502, -0.143]
1.12 [0.325, 0.003, -0.015] [0.472, -0.125, -0.048] [0.619, -0.252, -0.081] [0.766, -0.379, -0.113] [0.912, -0.507, -0.146]
1.13 [0.359, 0.003, -0.017] [0.507, -0.125, -0.050] [0.655, -0.254, -0.083] [0.803, -0.382, -0.116] [0.951, -0.511, -0.150]
1.14 [0.393, 0.004, -0.020] [0.542, -0.126, -0.053] [0.692, -0.256, -0.086] [0.841, -0.386, -0.120] [0.991, -0.515, -0.153]
1.15 [0.429, 0.004, -0.023] [0.580, -0.127, -0.056] [0.730, -0.258, -0.090] [0.881, -0.389, -0.123] [1.032, -0.519, -0.157]

Each cell reports the Darwinian effect, selection effective, and pro/anti-competitive effect for different boundary
conditions. Each column is a different value for the boundary condition δθ∗ and each row is a different aggregate
markup µ̄. The bulk of the positive changes in allocative are due to the Darwinian effect. The pro-competitive
and selection effects are either unimportant or harmful.
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Appendix C Proofs

In this section, we log-linearize the model and derive Theorem 1. We expand the equilibrium
equations presented in Section 2 to the first order in the shocks. We use these equations to
prove our results. Under Assumption 1, we can also iterate on them as differential equations
to solve for the response of endogenous variables non-linearly in our calibrated model.

Price aggregator. Differentiating the definition of the price aggregator, we find

d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
(1 − σθ) d log(

pθ
P

)
]
= 0.

Welfare. Matsuyama and Ushchev (2017) show that the ideal price index is related to the
price aggregator P by

log PY = log P −
∫
Θ

[∫
∞

pθ/P

sθ(ξ)
ξ

dξ
]

dF(θ).

Differentiating this equation, using the budget constraint PYY = 1, and combining with the
equation for d log P above yields

d log Y =
(
δ̄ − 1

)
d log M − λθ∗ (δθ∗ − 1)

g(θ∗)
1 − G(θ∗)

dθ∗ − Eλ
[
d log pθ

]
.

Quantities. Differentiating the demand curve facing each variety, we get

d log yθ = −σθd log
pθ
P
− d log P.

Markups. Differentiating the markup equation, we get

d logµθ =
ρθ − 1
ρθ

d log(
pθ
P

).

Prices. Differentiating the equation for prices, we find

d log pθ = d logµθ − d log Aθ.

Sales shares. Differentiating the sales shares equation, we find

d logλθ = d log
pθ
P
+ d log yθ +

−g(θ∗)
1 − G(θ∗)

dθ∗ + d log M + d log P.
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Ratio of variable profits to overhead costs. Differentiating our definition of Xθ, we get

d log Xθ =

(
1

µθ − 1

)
d logµθ + d logλθ − d log f0,θ.

Selection. Differentiating the selection condition, we get

d log Xθ∗ +

[
∂ log Xθ

∂θ

∣∣∣∣∣
θ∗

]
dθ∗ =

−g(θ∗)
1 − G(θ∗)

dθ∗ + d log M − d log L.

We define

1
γθ∗
=

1 − G(θ∗)
g(θ∗)

[
∂ log Xθ

∂θ

∣∣∣∣∣
θ∗

]
=

1 − G(θ∗)
g(θ∗)

[
−σθ
ρθ

∂ logµθ
∂θ

+

(
σθ
ρθ
− 1

)
∂ log Aθ

∂θ
−
∂ log fo,θ

∂θ

∣∣∣∣∣∣
θ∗

]
,

which allows us to write the selection condition more simply as

d log Xθ∗ +
1
γθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ =
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M − d log L.

Entry. Differentiating the free-entry condition yields

d log L +
(
1 −

[
Eλ

[ 1
σθ

]]−1 λθ∗

σθ∗

)
g(θ∗)

1 − G(θ∗)
dθ∗ − d log M + Eλ(1− 1

µ

) [d log fo,θ + d log Xθ
]

=
fed log

(
fe
)
− fo,θ∗g(θ∗)dθ∗ + (1 − G(θ∗))E

[
fo,θ

]
E fo

[
d log fo,θ

]
fe + (1 − G(θ∗))E

[
fo,θ

] .

Proof of Theorem 1. To solve for the change in welfare following a change in market size, d log L,
we take the system of log-linearized equations above and set d log Aθ = d log fo,θ = d log fe = 0.
We get the following system of eight equations:

Eλ [(1 − σθ)] d log P = d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
(1 − σθ) d log pθ

]

d log yθ = −σθd log
pθ
P
− d log P.

d log Y =
(
δ̄ − 1

)
d log M − λθ∗ (δθ∗ − 1)

g(θ∗)
1 − G(θ∗)

dθ∗ − Eλ
[
d log pθ

]
.

d logµθ =
ρθ − 1
ρθ

d log
(pθ

P

)
.

d log Xθ = (σθ − 1) d log pθ + d logλθ.
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d logλθ = d log pθ + d log yθ +
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M.

d log Xθ∗ +
1
γθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ =
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M − d log L.

d log L +
g(θ∗)

1 − G(θ∗)
dθ∗ − d log M + Eλ(1− 1

µ

) [d log Xθ
]
= 0.

We will now solve for the fixed point of this system. To start, we eliminate all firm-
level terms, d logµθ, d log pθ, d log yθ, d log Xθ, and d logλθ. We are left with a system of four
equations that together pin down the change in welfare, the mass of entrants, the selection
cutoff, and the price aggregator following a change in market size.

d log Y =
(
δ̄ − 1

)
d log M − λθ∗ (δθ∗ − 1)

g(θ∗)
1 − G(θ∗)

dθ∗ − Eλ
[
1 − ρθ

]
d log P.

0 = d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ − Eλ

[
(1 − σθ)ρθ

]
d log P.

−d log L = (σθ∗ − 1) d log P +
1
γθ∗

g(θ∗)
1 − G(θ∗)

dθ∗.

0 = d log L + Eλ(1− 1
µ

) [(σθ − 1)] d log P.

The last equation gives intuition for how the price aggregator moves as the market size
increases. An increase in market size lowers the price aggregator due to new entry. Since
competition between all varieties is mediated by the price aggregator, this decrease in the
price index then affects the relative quantities demanded of each variety, the selection cutoff,
and the markup adjustments chosen by each firm.

With some manipulation, we can express the change in welfare as a function of the change
in market size:

d log Y =
(
δ̄ − 1

)
d log L +

(
ξϵ + ξθ

∗

+ ξµ
)
µ̄d log L.

The first term captures the change in welfare due to technical efficiency while the second term
captured the change in welfare due to allocative efficiency. This equation gives the result in
Theorem 1. ■

Proof of Proposition 1. The aggregate markup is given by,

µ̄ = Eλ
[
µ−1
θ

]−1
.
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Log-linearizing, we get:

d log µ̄ =
(
λθ∗

µ̄

µθ∗
− 1

)
g(θ∗)

(1 − G (θ∗))
dθ∗ − Eλ

[
µ̄

µθ

(
d logλθ − d logµθ

)]
.

From above, we use:

d logµθ =
ρθ − 1
ρθ

d log
(pθ

P

)
= (1 − ρθ)d log P,

d logλθ = (1 − σθ) d log
pθ
P
+
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M,

d log M = λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
(1 − σθ)ρθ

]
d log P.

d log P = −Eλ
[ 1
σθ

]
µ̄d log L,

g(θ∗)
1 − G(θ∗)

dθ∗ = γθ∗
(
Eλ

[
σθ∗

σθ

]
− 1

)
µ̄d log L.

Substituting these into the expression for d log µ̄ and re-arranging yields Proposition 1. ■

Proof of Proposition 2. The change in real GDP (as measured by statistical agencies) is given by

d log Q = −Eλ[d log pθ].

Using d log pθ = d logµθ = (1 − ρθ)d log P = −(1 − ρθ)Eλ
[

1
σθ

]
µ̄d log L, we get:

d log Q = Eλ[1 − ρθ]Eλ
[ 1
σθ

]
µ̄d log L.

■

See Appendix E for the proof of Proposition 3.

Proof of Lemma 1. To derive (11), note that the initial allocation of labor allocates a fraction
l = E[lθ] = Eλ[1/µθ] to variable production, and the remainder to entry and overhead. Sup-
pose we take reduce the fraction of labor allocated to variable production (while preserving
the proportions of variable production labor allocated across firms) by d log lθ = d log l. Re-
allocating that labor to entry and overhead costs allows us to increase consumer welfare
by

Eλ[δθ] d log M = Eλ[δθ] d log le = Eλ[δθ]
Eλ[1/µθ]

1 − Eλ[1/µθ]
(−d log l) > 0,

where d log le is the increase in labor allocated to entry. This gain is consumer welfare is offset
by a reduction in the per-capita quantity consumed of each variety, equal to Eλ[d log yθ] =
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d log l−d log M. Rearranging, we find that the net change in welfare from reducing the fraction
of labor allocated to variable production and increasing the allocation to entry is positive if
and only if the average consumer surplus ratio exceeds the harmonic average of markups,
yielding the condition in (11) above. ■

Proof of Lemma 2. To derive this condition, suppose that we increase the selection cutoff by
dθ∗ > 0, and reallocate the labor previously allocated to the variable production and overhead
of varieties with type in [θ∗, θ∗ + dθ∗) proportionately to entry, overhead, and variable pro-
duction. The exiting varieties reduce consumer welfare by −δθ∗λθ∗[g(θ∗)/(1 − G(θ∗))]dθ∗. The
new varieties d log M = λθ∗[g(θ∗)/(1−G(θ∗))]dθ∗ increases consumer welfare by Eλ[δθ]d log M.
There is no change in the production of existing varieties d log yθ = 0. Plugging these pertur-
bations into (9), the overall effect on welfare is (Eλ[δθ] − δθ∗)λθ∗[g(θ∗)/(1 −G(θ∗))]dθ∗, which is
positive (too little selection) if and only if δθ∗ < Eλ[δθ]. ■

Proof of Lemma 3. The intuition is the following. Consider a reduction d log lθ′ < 0 in the
fraction of labor allocated to the supply of varieties in (θ′, θ′ + dθ′) and a complementary
increase d log lθ = −(g(θ′)/g(θ))(lθ′/lθ)d log lθ′ > 0 in the fraction of labor allocated to the
supply of varieties in (θ, θ + dθ′), which, using the fact that lθ′/lθ = (λθ′/µθ′)/(λθ/µθ), can
be rewritten as d log lθ = −(g(θ′)/g(θ))(λθ′/µθ′)/(λθ/µθ)d log lθ′ > 0. This leads to a decrease
d log yθ′ = d log lθ′ < 0 in the quantity of the former varieties and an increase d log yθ =
−(g(θ′)/g(θ))(λθ′/µθ′)/(λθ/µθ)d log lθ′ > 0 in the quantity of the latter varieties. The net effect
on welfare is g(θ′)λθ′d log yθ′dθ′ + g(θ)λθd log yθdθ′ = −(µθ/µθ′ − 1)λθ′g(θ′)dθ′d log lθ′ , which
is positive if and only µθ > µθ′ .

■

Proof of Proposition 4. Under Assumption 1, sales densities λθ are given by:

λθ = (1 − G(θ∗))Mpθyθ = (1 − G(θ∗))Ms(
1

AθBθ

µθ
P

).

Taking the partial derivative of λθ with respect to Aθ and Bθ yields:

∂ logλθ
∂ log Aθ

=
∂ logλθ
∂ log Bθ

= ρθ(σθ − 1).

Since ρθ > 0 and σθ > 1, sales are strictly increasing in AθBθ.
Profitability Xθ is

Xθ =
Lpθyθ

fo,θ

(
1 −

1
µθ

)
.
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Hence, under Assumption 1, the partial derivative of Xθ with respect to Aθ and Bθ is:

∂ log Xθ

∂ log Aθ
=
∂ log Xθ

∂ log Bθ
= σθ − 1.

Again, since σθ > 1, profitability is strictly increasing in AθBθ.
To show that any two firms with identical sales also have identical pass-throughs, markups,

and consumer surplus ratios, note also that since s(·) is strictly decreasing in its argument, there
is a one-to-one mapping between sales and a firm’s quality-adjusted relative price, 1

Bθ
pθ
P . Thus,

for any two firms with sales λθ and λθ′ , if λθ = λθ′ , then 1
Bθ

pθ
P =

1
Bθ′

pθ′
P . Finally, since under

Assumption 1, pass-throughs, markups, and consumer surplus ratios can all be expressed in
terms of the function s(·) and a firm’s relative price 1

Bθ
pθ
P , these firms must also have identical

pass-throughs, markups, and consumer sales ratios. ■

Proof of Proposition 5. The proof of (21) follows directly from combining the two differential
equations relating markups and sales to AθBθ provided in the main text.

For (22), recall

δθ =
sθ( pθ

P ) +
∫
∞

pθ/P
sθ(ξ)
ξ dξ

sθ( pθ
P )

.

Differentiating the numerator, we find that the change in the total surplus from a variety
follows:

d log
[
sθ(

pθ
P

) +
∫
∞

pθ/P

sθ(ξ)
ξ

dξ
]
= −

σθ
δθ

d log
pθ
P
=

σθ
σθ − 1

1
δθ

d logλθ.

Meanwhile, the denominator is simply proportional to revenues, so d log sθ = d logλθ. Hence
we get,

d log δθ =
(µθ
δθ
− 1

)
d logλθ.

For the overhead cost, recall from the selection condition,(
1 −

1
µθ∗

)
λθ∗

fo,θ
= (1 − G(θ∗))

M
L
.

Normalizing M = 1 and L = 1, applying uniform overhead costs fo,θ = fo, and using G(x) = x,
we get

(1 − θ∗) fo =

(
1 −

1
µθ∗

)
λθ∗ .

For the entry cost, recall from the free entry condition,

L
M

Eλ
[
1 −

1
µθ

]
= fe∆ + (1 − G(θ∗))E

[
fo,θ

]
.
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Thus,

Eλ
[
1 −

1
µθ

]
= fe∆ + (1 − θ∗) fo.

■
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Appendix D Implementation Using Product-Level Data

In the body of the paper, we assume that different products produced by a single firm are
perfect substitutes from the perspective of the consumer, and so we use overall sales of a firm
as the sales of each variety. An alternative approach is to instead to treat each product as a
single variety instead. In Table D.1 we display the average number of products each firm in
Prodcom sells, for each firm-size bin.

To map each product to a variety, we take the sales density for firms and divide the density
for firms of a given size by the average number of products (renormalizing the density so that
it still integrates to one). Mapping the model to the data in this way results in less dispersion
in sales, a left tail which is slightly less thick, and as a result, less dispersed estimates of
productivities and markups. The comparative statics for this version of the model are in Table
D.2. The basic qualitative message of our previous results in Table 1 is unchanged, and the
Darwinian effects are still overwhelmingly the dominant force in the model.

No of Employees No of Products No of firms

5 1.3636364 22
10 2.0550459 109
20 2.2004950 404
30 2.4203297 728
50 2.4203895 873
75 2.3727506 389
100 3.2946860 207
200 3.2250000 400
300 3.3308824 136
400 3.6511628 86
500 5.2162162 37
600 4.1724138 29
1000 8.3095238 42
8000 8.8780488 41

Table D.1: Number of products on average from Prodcom sample in 2014.
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Efficient selection Efficient entry
Eλ[δθ] = δθ∗ Eλ[δθ] = µ̄

Welfare: d log Y 0.169 0.266
Technical efficiency 0.042 0.090
Allocative efficiency 0.127 0.176

Darwinian effect 0.121 0.260
Selection effect 0.000 -0.062
Pro-competitive effect 0.006 -0.021

Real GDP per capita 0.030 0.030
Aggregate markup 0.211 0.211

Table D.2: The elasticity of welfare and real GDP per capita to population following Proposi-
tions 1 and 2 for heterogeneous firms case using product-level data.
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Appendix E Welfare Response to an Entry Tax

This appendix presents the proof of Proposition 3, which characterizes the response of welfare
to a marginal tax on entry.

We modify our setup to allow for an entry tax. As in the main text, demand curves are
given by

yθ =
I

pθ
sθ(

pθ
P

).

Now, however, the representative household’s income includes both labor earnings and dis-
tributed revenues from the entry tax, which we assume is returned to households in a lump-
sum transfer. We will use g to denote the per-capita rebate of tax revenue and ΛL to denote
the share of household income coming from labor earnings,∫

Θ

pθyθdF(θ) = I = w + g, and ΛL =
w

w + g
. (23)

We use the wage as the numeraire, normalizing w = 1 throughout.
On the production side, firms’ profit-maximizing prices and markups are unchanged, and

the selection condition remains unchanged. The entry condition now incorporates a tax on
entry, which we denote τ:

1
∆

∫ 1

θ∗

[(
1 −

1
µθ

)
pθyθwL − fo,θ

]
g(θ)dθ = (1 + τ) fe.

To ensure that sales densities λθ still integrate to one, we adjust the definition of the sales
density to

λθ = ΛLpθyθ (1 − G(θ∗)) M.

Finally, we add a government budget constraint, which sets the amount rebated to house-
holds equal to the amount collected in taxes,

τ fe∆M = gL.

We combine this equation with (23) to solve for the labor share in terms of the entry tax,

ΛL =
1

1 + τ∆ fe
M
L

.

We log-linearize the above conditions at the point where the tax is initially zero, and hence
τ = 0,ΛL = 1. The response of welfare to a change in the entry tax is thus described by the
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fixed point of the following system of equations:

d log Y = (Eλ [δθ] − 1) d log M − λθ∗ (δθ∗ − 1)
g(θ∗)

1 − G(θ∗)
dθ∗ − Eλ

[
d log pθ

]
− d logΛL.

d log yθ = −d logΛL − σθd log
pθ
P
− d log P.

0 = d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
(1 − σθ) d log(

pθ
P

)
]
.

d logµθ =
ρθ − 1
ρθ

d log
(pθ

P

)
.

d log Xθ =
1

µθ − 1
d logµθ + d logλθ.

d logλθ = d logΛL + d log
pθ
P
+ d log P + d log yθ +

−g(θ∗)
1 − G(θ∗)

dθ∗ + d log M.

1
γθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ = −d log Xθ∗ +
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M + d logΛL.

ψedτ =
g(θ∗)

1 − G(θ∗)
dθ∗ − d log M − d logΛL + Eλ(1− 1

µ

) [d log Xθ
]
.

d logΛL = −ψeEλ
[ 1
σθ

]
dτ.

where we define the share of fixed costs spent on entry ψe as

ψe =
∆ fe

∆ fe + (1 − G(θ∗))E
[

fo,θ
] .

Solving the fixed point yields,

d log Y =
[
1 −

Eλ [δθ]
µ̄

− (Eλ [δθ] − δθ∗)λθ∗γθ∗Eλ
[
σθ∗

σθ

]
−Eλ

[ 1
σθ

]
Eλ

[(
1 − ρθ

)
[1 − (Eλ [δθ] − 1) (σθ − 1)]

]
− (Eλ [δθ] − 1)

(
Eλ

[ 1
σθ

]
Eλ [σθ] − 1

)]
ψedτ.

We use the definitions of ξϵ, ξθ∗ , and ξµ in the main text to simplify this expression to the
result in Proposition 3.
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Appendix F Decomposing Technical and Allocative Efficiency

In this appendix, we explicitly solve out for ∂ logY/∂X and ∂X/∂ log L in equation (14). We
also discuss an alternative decomposition of the elasticity of welfare to market size in terms
of the decentralized equilibrium’s distance to the efficient frontier.

F.1 Decomposition Using Changes in the Allocation Matrix

In this section, we show how the allocation of labor changes in response to market size and
how those changes impact welfare. Combining the change in welfare due to changes in the
allocation with changes in the allocation due to market size yields Theorem 1.

We start with (14), which decomposes the change in welfare into a change in technical
efficiency, holding the allocation of resources across uses constant, and a change in allocative
efficiency.

d log Y =
∂ logY
∂ log L

d log L︸           ︷︷           ︸
technical efficiency

+
∂ logY
∂X

∂X
∂ log L

d log L.︸                      ︷︷                      ︸
allocative efficiency

(24)

For simplicity, we fix the entry cost fe and the overhead cost fo (which, for the purpose of this
appendix, we assume is identical across firms), and only consider changes in market size. The
allocation vector

X =

{
Lentry

L
,

Loverhead

L
,

Lvariable

L
,

{
lθ

Lvariable

}}
,

includes the fraction of total labor used for entry, overhead, variable production, and the
fraction of labor used for variable production per variety of type θ. (Following the notation in
the main text, we use lθ to denote the per-capita production labor used for each variety with
type θ.) For an allocation to be feasible, it must satisfy the constraints,

Lvariable =

∫
Θ

(lθ · L)dF(θ), and L = Lentry + Loverhead + Lvariable. (25)

We will also limit our focus to a subset of feasible allocations that have a single selection
cutoff θ∗whereby firms with types θ ≥ θ∗ produce and those with types θ < θ∗ do not produce,
where the cumulative distribution of firm types follows G(θ), and where entry and overhead
labor are allocated to all types for which the allocation of variable production labor is strictly
positive. This implies that resources used for entry and overhead costs are given by

Lentry =M fe and Loverhead =M (1 − G(θ∗)) fo.

Accordingly, the measure of varieties with type θ is dF(θ) =Mg(θ)1(θ≥θ∗)dθ.
In order to expand (24), we will need the partial derivative of welfare with respect to
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changes in each element of the allocation matrix X and how changes in the allocation matrix
X are bound by our feasibility constraints. Let us start by log-linearizing the feasibility
constraints in (25). First, for the constraint that labor allocated to variable production of each
variety must total the overall labor allocated to variable production, we get:

d log
Lvariable

L
= d log L + d log

Lentry

L
− λθ∗

µ̄

µθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ +
∫ 1

θ∗
λθ

µ̄

µθ
d log lθ

g(θ)
1 − G(θ∗)

dθ. (26)

Second, for the feasibility constraint on total labor usage, we get

d log
Lvariable

L
= −

[
µ̄ − 1

]
d log

Lentry

L
+ µ̄

(
1 −

1
µθ∗

)
λθ∗

g(θ∗)
1 − G(θ∗)

dθ∗. (27)

Note that here we directly use changes in the selection cutoff θ∗ as a proxy for the share
of labor spent on overhead costs. Since the set of feasible allocations we consider requires
Loverhead = M(1 − G(θ∗)) fo, for a given share of labor allocated to entry, there is a one-to-one
mapping between the selection cutoff and the share of labor allocated to overhead costs.

Next, we need each of the partial derivatives of welfare with respect to changes in the
allocation matrix. As exposited in the discussion of (14), we have that

∂ logY
∂ log Lentry = Eλ[δθ],

∂ logY
∂θ∗

= −δθ∗λθ∗
g(θ∗)

1 − G(θ∗)
∂ logY

∂ log Lvariable
= 1,

∂ logY
∂ log lθ

=
pθyθ

I
.

where the third line comes from the homotheticity of preferences and the final line applies
Shephard’s Lemma.

Plugging in each of these and the two feasibility constraints (26) and (27) into our equation
for welfare, we get:

d log Y = (Eλ [δθ] − 1) d log L︸                  ︷︷                  ︸
technical efficiency

+
(
Eλ [δθ] − µ̄

)
d log

Lentry

L
+

[
µ̄ − δθ∗

]
λθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ + Covλ

[
−
µ̄

µθ
, d log

lθ
Lvariable

]
︸                                                                                                    ︷︷                                                                                                    ︸

allocative efficiency

. (28)
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Equation (28) decomposes the change in allocative efficiency following a change in market
size into three components: (1) the change in welfare due to the change in the share of labor
allocated to entry, (2) the change in welfare due to the change in the selection cutoff, and (3) the
change in welfare due to reallocations of production labor across types. (Note that changes in
the share of labor allocated to variable production are subsumed in (1) and (2) because of the
feasibility constraint linking the allocation of labor across entry, overhead, and production.)

It is worth emphasizing that term (3) fully captures the effect of changes in the cross-
sectional allocation on welfare. Note that this is not the same as changes in the dispersion
of wedges, which is a commonly used statistic for the degree of misallocation. As term (3)
shows, allocative efficiency can change even if wedges are held constant.

We now consider the form these allocative efficiency terms take in the decentralized equi-
librium. The change in the share of labor allocated to variable entry and the change in
the selection cutoff in the decentralized equilibrium can be derived by rearranging the log-
linearized equilibrium conditions in Appendix C to get

d log
Lentry

L
=

(
λθ∗γθ∗µ̄

(
Eλ

[
σθ∗

σθ

]
− 1

)
+

[
Eλ [σθ − 1] − Eλ

[
(σθ − 1)

(
1 − ρθ

)]]
Eλ

[ 1
σθ

]
µ̄ − 1

)
d log L,

and

g(θ∗)
1 − G(θ∗)

dθ∗ = γθ∗
(
Eλ

[
σθ∗

σθ

]
− 1

)
µ̄d log L.

As for term (3) which describes changes in cross-sectional efficiency, we can write:

Covλ
(
−µ̄/µθ, d log lθ

)
=

Covλ
[
µ̄/µθ, σθ

]︸             ︷︷             ︸
>0

+ (−Eλσ
[
1 − ρθ

]
)Covλ

[
µ̄/µθ, σθ

]︸                                 ︷︷                                 ︸
<0

+Eλ [σθ] Covλσ
[
µ̄/µθ, ρθ

]︸                        ︷︷                        ︸
>0 (in data)

Eλ
[ 1
σθ

]
µ̄d log L

This equation shows that there are three types of reallocations that take place. The first
reallocation is the Darwinian effect: decreases in the price index reallocate resources to high-
markup firms. The second reallocation is due to price adjustments: if all firms cut their prices
by the same amount (in percentages), firms that are more elastic will expand relative to firms
with inelastic demand. The third reallocation is due to heterogeneous price adjustments:
firms with low pass-throughs cut their markups more, and hence expand relative relative to
high-passthrough firms. The first effect unambiguously reallocates to high-markup firms, the
second effect unambiguously reallocates to low-markup firms, and the third effect depends
on how pass-throughs and markups covary.

By grouping terms, we see that if markups negatively covary with pass-throughs (as they
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do in our calibration), the net effect is always a reallocation of labor to high-markup firms:

Covλ
(
−µ̄/µθ, d log lθ

)
=

Eλσ
[
ρθ

]
Covλ

[
µ̄/µθ, σθ

]︸                        ︷︷                        ︸
>0

+Eλ [σθ] Covλσ
[
µ̄/µθ, ρθ

]︸                        ︷︷                        ︸
>0 (in data)

Eλ
[ 1
σθ

]
µ̄d log L

(29)
Plugging in this expressions for Covλ

(
−µ̄/µθ, d log lθ

)
, as well as the above expressions for

d log Lentry/L and g(θ∗)/(1 − G(θ∗))dθ∗, into (28) yields Theorem 1.

F.2 Changes in the Distance to the Efficient Frontier

Our notion of allocative efficiency compares changes in welfare due to reallocations against the
benchmark where the allocation of resources is held constant. A different notion of allocative
efficiency that is also used in the literature measures changes in the distance to the efficient
frontier, which is given by

d log Y =
d log Yopt

d log L
d log L︸              ︷︷              ︸

Change in welfare at frontier

+
d log Y/Yopt

d log L
d log L︸                 ︷︷                 ︸

Change in distance to frontier

= (Eλopt[δopt
θ ] − 1)d log L +

(
d log Y
d log L

− (Eλopt[δopt
θ ] − 1)

)
d log L,

whereEλopt[δopt
θ ] is the sales-weighted average of consumer surplus ratios at the efficient point.43

Note that changes in this measure of allocative efficiency depend on whether the change in
welfare at the decentralized equilibrium, which we characterize in Theorem 1, is greater or
smaller than (Eλopt[δopt

θ ] − 1).

43The response of welfare to changes in market size at the efficient frontier can be derived from Theorem 1;
we additionally confirm that d log Yopt

d log L = (Eλopt [δopt
θ ] − 1)d log L using the policy that implements the first-best from

Appendix G.
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Appendix G Distance to Efficient Frontier

In this appendix, we characterize the distance to the efficient frontier, that is the amount of
misallocation in the decentralized equilibrium compared to the first-best allocation. Note that
this is different from how the distance to the efficient frontier changes with market size, which
we analyze in Appendix F.2.

In Appendix G.1, we characterize the policy that implements the first-best equilibrium
and use it to compute the distance to the frontier in our calibration. In Appendix G.2, we
provide an analytical second-order approximation of the distance to the frontier around the
CES benchmark, which decomposes the contributions of the different margins of inefficiency
to overall misallocation.

G.1 Optimal Policy and Quantitative Results

Suppose there is a social planner who can implement the efficient allocation by regulating
markups and imposing sales taxes. Theorem 1 from Baqaee and Farhi (2020) shows that the
planner can implement the first-best by setting markups according to the consumer surplus
each firm generates µopt

θ = δθ and setting sales taxes to be the reciprocal of markups τopt
θ = 1/µθ.

Intuitively, the markups provide socially optimal incentives along the extensive margin, and
the output taxes undo the inefficiencies brought about by dispersed markups.44

We numerically implement the first-best policy in order to compute the distance to the
efficient frontier for our calibrated model. The results in Table G.1 provide exact results
(they are not calculated using the approximation in Proposition 6 below) for the distance to
the frontier under the boundary conditions used in the main text, for both for the case with
heterogeneous firms and for the case with homogeneous firms.

Efficient selection Efficient entry
δ̄ = δθ∗ δ̄ = µ̄

Heterogeneous firms 0.059 0.072
Homogeneous firms 0.022 0.000

Table G.1: Distance to the efficient frontier log(Yopt/Y).

With heterogeneous firms, we find that the distance to the efficient frontier is around 6–7%.
While these numbers are sizable, one might think that they are not large enough. Indeed, in
Section 7, we saw in the decentralized equilibrium, cumulated changes in allocative efficiency
are large relative to cumulated changes in technical efficiency even for large increases in

44See Edmond et al. (2018) for an alternative implementation of the optimal allocation using taxes. Bilbiie et
al. (2019) also consider related issues in a dynamic context.
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population. If the distance to the frontier is sizable but not very large, doesn’t that mean
that the economy should quickly approach the frontier as we increase population? And then
shouldn’t this source of welfare gains grounded in misallocation quickly peter out? The
answer to these questions is no and the reason is the following. At the first-best allocation,
increases in population only increase welfare by improving technical efficiency. But changes in
technical efficiency for the first-best allocation (at the frontier) turn out to be much larger than
changes in technical efficiency for the decentralized equilibrium (inside the frontier). And so
the distance to the efficient frontier remains sizable even for large increases in population.45

With homogeneous firms, the distance to the frontier is zero when δ = µ since in that case
entry, which is the only margin that can be distorted, is efficient. Otherwise the distance to
the frontier is somewhat smaller than with heterogeneous firms. Again, and for the same
reasons as those explained above, this does not contradict the earlier observation that changes
in allocative efficiency are small at the decentralized equilibrium with homogeneous firms.

G.2 Analytical Second-Order Approximation

In this subsection, we provide an analytical expression for the social costs of the distortions
caused by monopolistic competition around the efficient CES benchmark. As we show below,
the proof of this result makes use of the optimal policy described in Appendix G.1.

We index the demand system sθ,t by some parameter t, where t = 0 gives a CES form for
sθ(·), and moving from t = 0 perturbs the residual expenditure function away from CES in
a smooth fashion. The proposition below provides a second-order approximation in t of the
distance to the efficient frontier, providing a link between our framework and the literature
on the social costs of misallocation with entry (for example, Epifani and Gancia 2011).

Proposition 6 (Distance to Frontier). The difference between welfare at the first-best allocation and
the decentralized equilibrium can be approximated around t = 0 by

log
Yopt

Y
≈

1
2

(Eλ [δθ] − 1) Covλ

[
σθ, log

1
µθ

]
+

1
2
Eλ [σθ]

(
Eλ [δθ]
µ̄

− 1
)2

+
1
2

(Eλ [δθ] − δθ∗)
2 λθ∗γθ∗

σθ∗

δθ∗
.

where the remainder term is order t3.

The first term captures distortions in the relative sizes of existing firms. It is related to
heterogeneity in markups µθ and is also increasing in the average consumer surplus ratio
Eλ[δθ].

45This discussion goes back to our definition of changes in allocative efficiency as the changes in welfare that
arise from the reallocation of resources as opposed to the change in the distance to the efficient frontier discussed
in Footnote 24.
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The second term captures the distortions due to inefficient entry. It scales with the squared
distance to unity of the ratio of the average consumer surplus ratio to the aggregate markup
Eλ[δθ]/µ̄. It also scales with the average elasticity of substitution Eλ[σθ].

The third and final term captures the distortions due to inefficient selection. It scales with
the squared difference between the consumer surplus ratio of the marginal firm δθ∗ and that of
the average Eλ[δθ]. It also scales with the hazard rate of profitability for the marginal firm γ∗θ
and the price elasticity of the marginal firm σθ∗ , which together capture the relevant elasticity
of the selection margin.

In the CES case, markups are constant across varieties µθ = µ̄, the aggregate markup is
equal to the average consumer surplus ratio µ̄ = Eλ[δθ], and consumer surplus ratios are
constant across varieties δθ∗ = Eλ[δθ]. As a result, all three terms are zero.

Proof of Proposition 6. Denote welfare at the efficient frontier Yopt and for a given t denote
welfare at the decentralized equilibrium Y(t). For some infinitesimal dt, the distance to the
efficient frontier L to a second order is

L = log Yopt
− log Y(dt) ≈ log Y(0) −

[
log Y(0) +

d log Y
∂t

∣∣∣∣∣
t=0

dt +
1
2

d2 log Y
dt2

∣∣∣∣∣∣
t=0

(dt)2
]

= −
1
2

d2 log Y
dt2

∣∣∣∣∣∣
t=0

(dt)2

≈ −
1
2

d log Y
dt

∣∣∣∣∣
t=dt

dt.

The second line uses the fact that, by the Envelope Theorem, the first derivative of Y with
respect to t at the efficient point is equal to zero. The third line uses a first-order expansion of
d log Y

dt |t=dt to substitute for d2 log Y
dt2 |t=0dt. Intuitively, we can take the first-order effect of moving

toward the efficient frontier at the decentralized equilibrium and divide by two, since we
know the derivative once we reach the efficient point is zero and the average of two first-order
approximations yields a second-order approximation.

To get the derivative d log Y
dt , we use the fact that the distance to the frontier is given by

integrating changes in welfare from the decentralized equilibrium at t (given by markups µθ
in the decentralized equilibrium and sales taxes τθ = 1) to the efficient allocation (which can
be implemented using µopt

θ = δθ and τopt
θ = 1/µθ):

log
Yopt

Y(t)
=

∫ (δθ(t),1/δθ(t))

(µθ(t),1)

[
∂ log Y
∂ logµθ

∂ logµθ
∂ν

+
∂ log Y
∂ log τθ

∂ log τθ
∂ν

]
dν,

where dν increments changes in the policy from (µθ(t), 1) to (δθ(t), 1/δθ(t)).
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Taking the derivative with respect to t and applying the Envelope Theorem yields

d log Y(t)
dt

=

(
∂ log Y
∂ logµθ

d logµθ
dt

+
∂ log Y
∂ log τθ

d log τθ
dt

)∣∣∣∣∣∣
(µθ(t),1)

Hence, we proceed in two steps. In the first step, we rewrite our system of equilibrium
equations allowing for exogenous markups and sales taxes, and log-linearize these equations
to get how welfare responds to changes in markups and sales taxes. Second, we specialize
these equations to the decentralized equilibrium and apply changes in markups and taxes
toward the efficient point (i.e., − d logµθ

dt and − d log τθ
dt ) to get d log Y

dt . We use this to solve for the
distance to the efficient frontier L.

Step 1:

We rewrite our system of equilibrium equations allowing for these sales taxes and exogenous
markups. Now, the equilibrium equations include our definition of the labor share,

ΛL =

∫ 1

θ∗

λθ
τθ

g(θ)
1 − G(θ∗)

dθ,

the implicit definition of the price aggregator P,

M
∫ 1

θ∗
s(

pθ
P

)g(θ)dθ = 1,

demand curves per variety,

yθ =
1

pθΛL
s(

pθ
P

),

prices,

pθ =
µθτθ
Aθ

,

our definition of welfare,

log Y = − logΛL − log P +
∫ 1

θ∗
λθ (δθ − 1)

g(θ)
1 − G(θ∗)

dθ,

sales shares,
λθ = pθyθΛL (1 − G(θ∗)) M,

the selection condition, (
1 −

1
µθ∗

)
λθ∗

τθ∗
1

fo,θ∗
= (1 − G(θ∗))ΛL

M
L
,
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and the free entry condition,∫ 1

θ∗

[(
1 −

1
µθ

)
1
τθ

pθyθL − fo,θ

]
g(θ)dθ = ∆ fe.

The log-linearized system of equations, allowing for exogenous changes in markups
d logµθ and sales taxes d log τθ, is

d logΛL =
(
1 −

λθ∗

τθ∗ΛL

) g(θ∗)
1 − G(θ∗)

dθ∗ + Eλ
[ 1
τθΛL

(
d logλθ − d log τθ

)]
.

0 = d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
(1 − σθ) d log(

pθ
P

)
]
.

d log yθ = −d logΛL − σθd log
pθ
P
− d log P.

d log pθ = d logµθ + d log τθ.

d log Y = (Eλ[δθ] − 1) d log M − λθ∗ (δθ∗ − 1)
g(θ∗)

1 − G(θ∗)
dθ∗ − Eλ

[
d log pθ

]
− d logΛL.

d logλθ = d log pθ + d log yθ + d logΛL +
−g(θ∗)

(1 − G(θ∗))
dθ∗ + d log M.

0 =
1

µθ∗ − 1
d logµθ∗ + d logλθ∗ − d log τθ∗ +

∂ log
(
1 − 1

µθ

)
λθ
τθ

1
fo,θ

∂θ

 dθ∗

+
g(θ∗)

(1 − G(θ∗))
dθ∗ − d logΛL − d log M + d log L.

0 = d log L + Eλ(1−1/µ)(1/τ)

[
1

µθ − 1
d logµθ − d log τθ + d log pθ + d log yθ

]
.

Step 2:

In the second step, we apply these formulas at the decentralized equilibrium, where τθ = 0
and µθ = σθ/(σθ − 1). We then apply changes in markups and taxes toward the efficient point.

Applying the formula at the monopolistic competitive equilibrium. We start at the
monopolistic competitive equilibrium. We can simplify the equations to get

d logΛL = (1 − λθ∗)
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[(
d logλθ − d log τθ

)]
0 = d log M − λθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ + Eλ
[
(1 − σθ) d log(

pθ
P

)
]
.

d log yθ = −d logΛL − σθd log
pθ
P
− d log P.

d log pθ = d logµθ + d log τθ.
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d log Y = (Eλ[δθ] − 1) d log M − λθ∗ (δθ∗ − 1)
g(θ∗)

1 − G(θ∗)
dθ∗ − Eλ

[
d log pθ

]
− d logΛL.

d logλθ = d log pθ + d log yθ + d logΛL +
−g(θ∗)

(1 − G(θ∗))
dθ∗ + d log M.

0 =
1

µθ∗ − 1
d logµθ∗ + d logλθ∗ − d log τθ∗ +

1
γθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ +
g(θ∗)

(1 − G(θ∗))
dθ∗ − d logΛL − d log M.

0 = Eλ(1−1/µ)

[
1

µθ − 1
d logµθ − d log τθ + d log pθ + d log yθ

]
= 0.

Solving the fixed point yields,

d logΛL = −Eλ
[
d log τθ

]
,

d log P = Eλ
[
d log τθ

]
,

g(θ∗)
1 − G(θ∗)

dθ∗ = σθ∗γθ∗
(
d log τθ∗ − Eλ

[
d log τθ

])
,

and

d log Y = (Eλ [δθ] − δθ∗)λθ∗γθ∗σθ∗
[
d log τθ∗ − Eλ

[
d log τθ

]]
+ (Eλ [δθ] − 1)Eλ

[
[σθ − Eλ [σθ]]

(
d log τθ + d logµθ

)]
+ Eλ

[
[(Eλ [δθ] − 1)Eλ [σθ − 1] − 1] d logµθ

]
.

Applying to changes in markups and taxes towards the efficient point. Efficiency requires
markups µθ = δθ and taxes on production τθ = 1/µθ. Hence we use the forcing variables (the
endogenous response of δθ( p

P ) is second order):

d logµθ = log(
δθ
µθ

),

d log τθ = − log δθ,

d log(µθτθ) = − logµθ.

Near the efficient point, we can also use the approximations,

log(
δθ
µθ

) ≈
δθ
µθ
− 1,

log(
δθ
δθ∗

) ≈
δθ
δθ∗
− 1.

Plugging into welfare, we get
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d log Y = (Eλ [δθ] − δθ∗)
2 λθ∗γθ∗

σθ∗

δθ∗

+ (Eλ [δθ] − 1) Covλ
[
σθ,− logµθ

]
+ Eλ

[
σθ

(
Eλ [δθ]
µθ

− 1
)]
Eλ

[
δθ
µθ
− 1

]
.

Expanding the last term,

Eλ
[
σθ

(
Eλ [δθ]
µθ

− 1
)]
Eλ

[
δθ
µθ
− 1

]
=

(
Eλ [δθ] Covλ

[
σθ,

1
µθ

]
+ Eλ [σθ]

(
Eλ [δθ]
µ̄

− 1
)) (

Covλ

[
δθ,

1
µθ

]
+
Eλ [δθ]
µ̄

− 1
)

Note that the term
(
Eλ[δθ]
µ̄ − 1

)
is order t and both covariances Covλ

[
σθ, 1

µθ

]
and Covλ

[
δθ, 1

µθ

]
are

order t2. Since we are interested in a second-order approximation in t, we drop terms of order
t3 or higher to get:

Eλ
[
σθ

(
Eλ [δθ]
µθ

− 1
)]
Eλ

[
δθ
µθ
− 1

]
≈ Eλ [σθ]

(
Eλ [δθ]
µ̄

− 1
)2

.

Hence,

d log Y = (Eλ [δθ] − δθ∗)
2 λθ∗γθ∗

σθ∗

δθ∗
+ (Eλ [δθ] − 1) Covλ

[
σθ,− logµθ

]
+ Eλ [σθ]

(
Eλ [δθ]
µ̄

− 1
)2

.

Note that this expression is equal to −d log Y
dt from our above expressions, since we have applied

changes in markups and sales taxes toward the efficient point (i.e., −d logµθ
dt and −d log τθ

dt ).
Finally, the loss function encapsulating the distance to the efficient frontier is

L ≈ −
1
2

d log Y
dt

dt.

Plugging in our expression for d log Y above and rearranging yields Proposition 6. ■
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Appendix H Shocks to Entry and Overhead Costs

In this appendix, we characterize comparative statics with respect to shocks to the fixed entry
and overhead costs. For simplicity, we consider the case where overhead costs are identical
across firms, fo,θ = fo. Proposition 7 characterizes the response of welfare to a change in fixed
costs of entry and overhead costs.

Proposition 7. In response to changes in fixed costs of entry d log fe and fixed overhead costs d log fo,
changes in consumer welfare are given by

d log Y = − (Eλ [δθ] − 1)
[
ψed log

(
∆ fe

)
+

(
1 − ψe

)
d log fo

]︸                                                     ︷︷                                                     ︸
technical efficiency

−

(
ξϵ + ξθ

∗

+ ξµ
)
µ̄
[
ψed log

(
∆ fe

)
+

(
1 − ψe

)
d log fo

]︸                                                          ︷︷                                                          ︸
allocative efficiency

+ λθ∗γθ∗ (Eλ [δθ] − δθ∗)ψe(d log fo − d log(∆ fe))︸                                                    ︷︷                                                    ︸
allocative efficiency

.

where ξϵ, ξθ∗ , and ξµ are given in Theorem 1 and ψe = ∆ fe/
(
∆ fe + (1 − G(θ∗))E

[
fo,θ

])
is the entry

cost share of all fixed costs as defined in Proposition 3.

To understand these results, it is useful to observe that the free entry condition is homoge-
neous of degree one in fixed costs and population. This is because the fixed costs only matter
to entering firms on a per capita basis, fe/L and fo/L. As a result, joint proportional reduc-
tions in fixed costs of entry and fixed overhead costs d log fe = d log fo < 0 have exactly the
same effects on entry as equivalent increases in population d log L = −d log fe = −d log fo > 0.
Accordingly, the first two terms of Proposition 7 mirror the technical and allocative efficiency
terms in Theorem 1.

The overhead cost plays an additional role in regulating the selection margin. As a result,
the third term in Proposition 7 captures whether toughening selection increases or decreases
allocative efficiency. If the overhead cost increases, the selection cutoff moves up. This
improves welfare if the marginal firm provides less social value than the average firm (δθ∗ <
Eλ[δθ]), and decreases welfare if the marginal firm provides more social value than the average.

The same intuitions carry over to the response of real GDP per capita to a change in fixed
entry and overhead costs.

Proposition 8. In response to changes in fixed costs of entry d log fe and fixed overhead costs d log fo,
changes in real GDP per capita are given by

d log Q = −Eλ
[ 1
σθ

]
Eλ

[
1 − ρθ

]
µ̄
[
ψed log

(
∆ fe

)
+

(
1 − ψe

)
d log fo

]
.
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Appendix I Generalized Kimball (HDIA) Preferences

In this appendix, we develop a version of our results using an alternative demand system
to the HSA preferences we use in the main text. We use a generalization of Kimball (1995)
preferences, called homothetic demand with a direct implicit additivity (HDIA) preferences
by Matsuyama and Ushchev (2017). The CES demand system is the only point of union
between HDIA preferences and the HSA preferences used in the main text. Nevertheless, our
theoretical and quantitative results are quite similar when we use HDIA preferences instead.

This appendix is organized as follows. In Section I.1, we set up the consumer and firm
problems and describe firm elasticities, markups, pass-throughs, and consumer surplus ratios
in terms of primitives. In Section I.2, we present theoretical results analogous to Theorem 1
and Proposition 2 in the main text. Finally, we show that the system of differential equations
used to calibrate the model remain valid under HDIA preferences and provide quantitative
results analogous to Table 1 and Table 2. The results are qualitatively and quantitatively
similar to those in the main text.

I.1 Setup

Under HDIA preferences, per-capita welfare Y is defined implicitly by∫
θ∈Θ

Υθ(
yθ
Y

)dF(θ) = 1, (30)

where yθ is the per-capita consumption of variety θ, the functionΥθ is increasing and concave
with Υθ(0) = 0, the set Θ contains all potential varieties, and dF(θ) is the measure of varieties
of type θ.

Consumers maximize their utility Y subject to the budget constraint∫
θ∈Θ

pθyθdF(θ) = 1, (31)

where pθ is the price of variety θ. As in the main text, per-capita income is the numeraire.
Solving the household problem yields the per-capita inverse-demand curve for an indi-

vidual variety θ,
pθ
P
= Υ′θ(

yθ
Y

), (32)

where the price aggregator P and the demand index δ̄ are defined as

P =
δ̄
Y
, and

1
δ̄
=

∫
θ∈Θ

Υ′θ(
yθ
Y

)
yθ
Y

dF(θ). (33)
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The firm side of the economy remains exactly the same as in the main text: upon entry,
firms draw a type θ from a distribution with density g(θ) and cumulative density function
G(θ). Each firm then decides whether to operate, and if so, what price to charge. The firm’s
maximization problem is

max
operate,pθ


(
pθ − 1

Aθ

)
Lyθ − fo,θ if the firm operates

0 if the firm does not operate
(34)

subject to the household per-capita demand curve in (32).
For firms that operate, the price that maximizes firm profits can be written as a markup µθ

times the firms marginal cost, where the markup is given by the Lerner formula,

µθ(
y
Y

) =
1

1 − 1
σθ( y

Y )

, (35)

and the price-elasticity of demand is given by,

σθ(
y
Y

) = −
∂ log yθ
∂ log pθ

=
Υ′θ( y

Y )

−
y
YΥ
′′

θ ( y
Y )
.

Firms are ordered by the ratio Xθ of variable profits to overhead costs, so there is an
endogenous cutoff type θ∗ such that(

pθ∗ −
1

Aθ∗

)
Lyθ∗ = fo,θ∗ , (36)

firms with types θ ≥ θ∗ operate, and firms with types θ < θ∗ exit the market. Free entry leads
expected profits to be equal to entry costs in equilibrium,∫ 1

θ∗

[(
1 −

1
µθ

)
pθyθwL − fo,θ

]
g(θ)dθ = fe. (37)

We use the set Θ to denote types that operate in equilibrium: Θ = {θ|θ ≥ θ∗}. We use M to
denote the mass of entrants, so that the mass of surviving firms is (1 − G(θ∗))M. Accordingly,
the density of varieties available to the consumer dF(θ) =Mg(θ)1(θ≥θ∗)dθ.

We will use the same definitions of pass-throughs and consumer surplus ratios as in the
main text. In terms of primitives, the pass-through and the consumer surplus ratio are now

ρθ(
y
Y

) =
1

1 +
y
Yµ
′

θ
( y

Y )

µθ( y
Y )
σθ( y

Y )
, and δθ(

y
Y

) =
δ̄Υθ( y

Y )
pθyθ

=
Υθ( y

Y )
y
YΥ
′

θ( y
Y )
.
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Note that by integrating the equation for δθ, we can show that the demand index in (33) is
simply the sales-weighted average of the consumer surplus ratio, δ̄ = Eλ[δθ].

The sales density is defined as λθ = (1 − G(θ∗))Mpθyθ. We again denote the harmonic
(sales-weighted) average of markups µ̄ = Eλ[µ−1

θ ]−1.
In equilibrium, consumers maximize utility, firms maximize profits, and resource con-

straints are satisfied. The equilibrium is defined by the implicit definition of welfare (30),
the consumer’s demand for each variety (32), the household budget constraint (31), firms’
profit-maximizing markups (35), the selection cutoff (36), and the free entry condition (37).

I.2 Response to Change in Market Size

Theorem 2 characterizes the change in welfare following an exogenous change in market size
under HDIA preferences.

Theorem 2. In response to changes in population d log L, changes in consumer welfare are given by

d log Y =
(
Eλ[δθ] − 1

)
d log L︸                  ︷︷                  ︸

technical efficiency

+
ξϵ + ξθ

∗

+ ξµ

1 − ξϵ − ξθ∗ − ξµ

(
Eλ[δθ]

)
d log L︸                                    ︷︷                                    ︸

allocative efficiency

,

where

(Darwinian Effect) ξϵ = (Eλ[δθ] − 1) Covλ

[
σθ,

1
µθ

]
,

(Selection Effect) ξθ
∗

= (Eλ[δθ] − δθ∗)λθ∗γθ∗
(
Eλ

[
σθ∗

σθ

]
− 1

)
,

(Pro/Anti-competitive Effect) ξµ = Eλ
[(

1 − ρθ
)
σθ

(
1 −

Eλ[δθ]
µθ

)]
Eλ

[ 1
σθ

]
.

Compared to the results under HSA preferences in the main text, the change in technical
efficiency following a change in market size is the same, but the change in allocative efficiency
is somewhat different. Note, however, that the change in allocative efficiency depends on the
same three margins of adjustment: the Darwinian margin (ξϵ), the selection margin (ξθ∗), and
pro/anti-competitive (ξµ). The terms ξϵ, ξθ∗ , and ξµ, are exactly as defined in the main text.
For a given collection of ξε, ξθ∗ , ξµ, the HDIA model will generate stronger reallocation effects
as long as ξε+ξθ∗ +ξµ ∈ [0, 1]. Intuitively, this is because HDIA preferences feature a feedback
loop from increases in Y driving reductions in P and reductions in P driving increases in Y.
HSA preferences lack this feedback loop. Quantitatively however, we find very similar results
when we calibrate the HDIA version of the model.

Proposition 9 describes the response of real GDP to a change in market size.

73



Proposition 9. In response to changes in population d log L, changes in real GDP per capita are given
by

d log Q = Eλ
[
1 − ρθ

]
Eλ

[ 1
σθ

] (
d log Y + d log L

)
,

where d log Y is given by Theorem 2.

Proof of Theorem 2 and Proposition 9. In response to an exogenous change in market size d log L,
the following system of log-linearized equations describe the movements of all endogenous
variables.

0 = δ̄d log M − λθ∗δθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
d log(

yθ
Y

)
]
.

−d log P = d log Y + d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[(
1 −

1
σθ

)
d log(

yθ
Y

)
]
.

d log pθ − d log P = −
1
σθ

d log(
yθ
Y

).

d logµθ =
1
σθ

1 − ρθ
ρθ

d log(
yθ
Y

).

d log Xθ =

(
1

µθ − 1

)
d logµθ + d logλθ.

d logλθ = d log pθ + d log(
yθ
Y

) +
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M + d log Y.

d log Xθ∗ +
1
γθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ =
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M − d log L.

0 = d log L +
g(θ∗)

1 − G(θ∗)
dθ∗ − d log M + Eλ(1− 1

µ

) [d log Xθ
]
.

The first three equations, which describe the change in welfare, the change in the price
aggregator, and the change in the consumption of individual varieties, are different from the
analogous equations under HSA preferences, since the consumer demand curve and the price
aggregator are now different. The remaining equations are unchanged from the derivation
under HSA preferences.

Solving the fixed point of this system yields Theorem 2 and Proposition 9. ■

I.2.1 Conditions for a Locally Unique Equilibrium

One implication of Theorem 2 is that the change in welfare is not well defined under HDIA
preferences if ξϵ + ξθ∗ + ξµ = 1. Given this concern, in this subsection, we develop conditions
under which the model equilibrium exists and is locally unique, so that the comparative static
with respect to market size is well defined.

We first begin with a definition of a feasible set of statistics (sales densities, consumer
surplus ratios, markups, pass-throughs, variable profit to overhead cost ratios, and selection
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cutoff), then show that a condition on these statistics is sufficient to prove that the equilibrium
exists and is locally unique (Proposition 10). Finally, we provide a set of simpler (but stricter)
sufficient conditions that guarantee existence and local uniqueness (Corollary 7).

Definition 1. A collection of sales densities, consumer surplus ratios, markups, pass-throughs,
variable profit to overhead cost ratios, and selection cutoff

{{
λθ, δθ, µθ, ρθ,Xθ

}
θ∈Θ , θ

∗

}
is feasible

if

1.
∫
θ∈Θ

λθdθ = 1 and λθ ≥ 0 for all θ,

2. δθ, µθ ≥ 1 for all θ,

3. ρθ ≥ 0 for all θ,46

4. Xθ ≥ 0 and ∂ log Xθ

∂θ > 0 for all θ, and

5. Xθ∗ = 0.

Proposition 10 (Existence and Local Uniqueness). For any feasible
{{
λθ, δθ, µθ, ρθ,Xθ

}
θ∈Θ , θ

∗

}
,

the equilibrium exists and is locally unique if

−(Eλ[δθ] − 1) < ξϵ + ξθ
∗

+ ξµ < 1,

where ξϵ, ξθ∗ , and ξµ are functions of
{{
λθ, δθ, µθ, ρθ,Xθ

}
θ∈Θ , θ

∗

}
as defined in Theorem 1.

Proof. We first show that any collection of feasible
{{
λθ, δθ, µθ, ρθ,Xθ

}
θ∈Θ , θ

∗

}
can be rational-

ized via some collection of primitives
{
Υθ,Aθ, fo,θ

}
. Then, by the inverse function theorem,

the equilibrium exists and is locally unique for that
{
Υθ,Aθ, fo,θ

}
if the Jacobian determinant is

non-zero for the corresponding
{{
λθ, δθ, µθ, ρθ,Xθ

}
θ∈Θ , θ

∗

}
.

First, note that the collection
{
λθ, δθ, µθ, ρθ,Xθ

}
θ∈Θ can be expressed in terms of some

underlying
{
Υθ,Aθ, fo,θ

}
:

λθ = δ̄
yθ
Y
Υ′θ(

yθ
Y

)M(1 − G(θ∗)),

δθ =
Υθ( yθ

Y )
yθ
Y Υ

′

θ( yθ
Y )
,

µθ =
1

1 −
−

yθ
Y Υ

′′

θ
(

yθ
Y )

Υ′
θ

(
yθ
Y )

,

ρθ =
1

µθ

[ yθ
Y Υ

′′′

θ
(

yθ
Y )

−Υ′′
θ

(
yθ
Y )
− 1

] ,
46The reader may note that assumption (3) is also sufficient for marginal revenue curves to be downward-

sloping.
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Xθ =
λθ
fo,θ

(
1 −

1
µθ

)
.

To rationalize the observed statistics, first choose Υ′θ( yθ
Y ) to match the sales densities λθ. Then,

choose
{
Υθ( yθ

Y ),Υ′′θ ( yθ
Y ),Υ′′′θ ( yθ

Y )
}

to match
{
δθ, µθ, ρθ

}
. Finally, given λθ and µθ, choose { fo,θ} to

match {Xθ}.
By the inverse function theorem, the equilibrium defined by

{{
λθ, δθ, µθ, ρθ,Xθ

}
θ∈Θ , θ

∗

}
and

the set
{
Υθ,Aθ, fo,θ

}
is locally unique if the Jacobian determinant is well-defined and non-zero

at the equilibrium point. Following Theorem 1, this is the case as long as

ξϵ + ξθ
∗

+ ξµ < 1.

and
ξϵ + ξθ

∗

+ ξµ , 1 − Eλ[δθ].

The requirement −(Eλ[δθ] − 1) < ξϵ + ξθ∗ + ξµ < 1 ensures both conditions are met. ■

Corollary 7 lists three stricter conditions that are sufficient (but not necessary) to ensure
that the condition on

{{
λθ, δθ, µθ, ρθ,Xθ

}
θ∈Θ , θ

∗

}
from Proposition 10 is met.

Corollary 7 (Sufficient Conditions for Existence and Local Uniqueness). For a feasible{{
λθ, δθ, µθ, ρθ,Xθ

}
θ∈Θ , θ

∗

}
, sufficient conditions for the equilibrium to exist and be locally unique are:

1. Firm pass-throughs are ρθ ≤ 1 for all θ.

2. There is a maximum price-elasticity of demand faced by a firm, σmax, which satisfies
(σmax

− 1) (Eλ [δθ] − 1) ≤ 4.

3. At the cutoff, the price-elasticity of demand and consumer surplus ratio are both weakly greater
than average (δθ∗ ≥ Eλ [δθ] and σθ∗ ≥ Eλ[σθ]), and δθ∗ is at most Eλ [δθ] + (Eλ[δθ]−1)2

4λθ∗γθ∗
.

Proof. Rearranging terms from Theorem 1, the condition that ξϵ + ξθ∗ + ξµ < 1 is equivalent to:

Eλ
[
ρθ

(
σθ

(
1 −

1
Eλ [δθ]

)
− 1

)]
+ 1 +

(
Eλ [δθ] − δθ∗

Eλ [δθ]

)
λθ∗γθ∗

(
σθ∗ − Eλ

[
σ−1
θ

]−1
)
< Eλ

[
σ−1
θ

]−1
.

We can bound the left-hand side:

LHS = Eλ
[
ρθ

(
σθ

(
1 −

1
Eλ [δθ]

)
− 1

)]
+ 1 +

(
Eλ [δθ] − δθ∗

Eλ [δθ]

)
λθ∗γθ∗

(
σθ∗ − Eλ

[
σ−1
θ

]−1
)

≤ Eλ
[
ρθ

(
σθ

(
1 −

1
Eλ [δθ]

)
− 1

)]
+ 1

≤

(
1 −

1
Eλ [δθ]

)
Eλ [σθ] ,
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where the second line uses assumption (3) and the third line uses assumption (1). We can thus
restate our condition as:

Eλ [σθ]Eλ
[
σ−1
θ

]
− 1 <

1
Eλ [δθ] − 1

.

Again, we can bound the left-hand side:

Eλ [σθ]Eλ
[
σ−1
θ

]
− 1 = −Covλ

[
σθ, σ

−1
θ

]
≤

(
Varλ [σθ] Varλ

[
σ−1
θ

])1/2

≤
1
4

(
σmax

− 1
σmax

)
(σmax

− 1)

<
1
4

(σmax
− 1) ,

where the second line applies the Cauchy-Schwarz inequality and the third line applies
Popoviciu’s inequality.47 Hence, we have ξϵ + ξθ∗ + ξµ < 1 if

1
4

(σmax
− 1) ≤

1
Eλ [δθ] − 1

,

which is satisfied under assumption (2). For context, in the efficient entry case where Eλ [δθ] =
1.09, assumption (2) implies the price elasticity of demand is at most σmax = 45. For the efficient
selection case where Eλ [δθ] = 1.033, the price elasticity of demand is at most σmax = 122 (i.e.,
the lowest markup of any firm is 1.008).

The condition that ξϵ + ξθ∗ + ξµ > −(Eλ[δθ] − 1) can be rewritten as:

(Eλ[δθ] − δθ∗)λθ∗γθ∗
(
σθ∗ − Eλ

[
σ−1
θ

]−1
)
+ Eλ

[
ρθ (σθ − 1)

]
(Eλ[δθ] − 1) − Eλ

[
ρθ

]
+ Eλ[δθ] > 0.

Since ρθ ∈ [0, 1] (assumption (1) and feasibility), a sufficient condition is that

(Eλ[δθ] − δθ∗)λθ∗γθ∗
(
σθ∗ − Eλ

[
σ−1
θ

]−1
)
+ (Eλ[δθ] − 1) > 0,

or
δθ∗ < Eλ [δθ] +

1
λθ∗γθ∗

Eλ [δθ] − 1

σθ∗ − Eλ
[
σ−1
θ

]−1 .

We can bound the right-hand side,

RHS = Eλ [δθ] +
1

λθ∗γθ∗
Eλ [δθ] − 1

σθ∗ − Eλ
[
σ−1
θ

]−1

47These bounds are quite loose; we could further relax assumption (2) by considering tighter bounds on both
inequalities.
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> Eλ [δθ] +
1

λθ∗γθ∗
Eλ [δθ] − 1
σmax − 1

≥ Eλ [δθ] +
(Eλ [δθ] − 1)2

4λθ∗γθ∗
.

When the sales-share of the cutoff firm λθ∗ is small, as it is in our quantitative application, this
can be large upper bound for δθ∗ .

■

I.3 Calibration

For calibration, we impose the restriction that the aggregator function is identical across types,
Υθ = Υ.48 We also assume that overhead costs are homogenous across firms, fo,θ = fo, so that
the sole source of exogenous variation across firm types is due to differing productivities Aθ.
Under this restriction, we can use the cross-sectional variation in pass-throughs and sales
shares to solve for markups and consumer surplus ratios, up to boundary conditions.

The same differential equations used to solve for markups and consumer surplus ratios
in the HSA case apply under HDIA preferences. To see why, note that the markups and
sales-shares vary with productivity according to:

d logµθ
dθ

=
(
1 − ρθ

) d log Aθ

dθ
,

d logλθ
dθ

=
ρθ

µθ − 1
d log Aθ

dθ
.

Rearranging yields the differential equation,

d logµθ
dθ

=
(
µθ − 1

) 1 − ρθ
ρθ

d logλθ
dθ

,

from which we solve for markups up to a boundary condition using pass-throughs and sales
shares.

For consumer surplus ratios, recall that we can write

δθ(
y
Y

) =
Υθ( y

Y )
y
YΥ
′

θ( y
Y )
.

Differentiating both sides and rearranging, we find a differential equation relating consumer

48We could easily allow for the aggregator Υθ to differ across types according to a multiplicative demand
shifter, as in the calibration in the main text (see (20)).
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surplus ratios to markups,
d log δθ

dθ
=
µθ − δθ
δθ

d logλθ
dθ

,

which we use to solve for consumer surplus ratios up to a boundary condition. Since both
differential equations are identical to those derived under HSA preferences in the main text,
the estimates of sufficient statistics are unchanged.

Table I.1 shows the elasticity of welfare and real GDP per capita to market size. The elasticity
of welfare to market size is further decomposed into changes in technical and allocative
efficiency, including the three margins of adjustment (entry, exist, and markups) discussed in
the main text. The results are quantitatively similar to those in the main text. In particular, the
majority of gains from an increase in market size are due allocative efficiency effects arising
from entry; the selection and pro-competitive channels have zero or mildly deleterious effects
on welfare.

Efficient selection Efficient entry
δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.303 0.317
Technical efficiency: d log Ytech 0.033 0.090
Allocative efficiency: d log Yalloc 0.269 0.227

Darwinian effect: d log Yϵ
− d log Ytech 0.284 1.500

Selection effect: d log Yϵ,θ∗
− d log Yϵ 0.000 -1.110

Pro-competitive effect: d log Yϵ,θ∗,µ
− d log Yϵ,θ∗ -0.015 -0.162

Real GDP per capita 0.052 0.053

Table I.1: The elasticity of welfare and real GDP per capita to population following Theorem 2
and Proposition 9.

Table I.2 replicates the analysis in a setting with homogeneous firms. Again, firm hetero-
geneity appears to play a significant role. Without heterogeneity, we find that the elasticity of
welfare to changes in market size are much smaller than in the calibration with heterogeneous
firms.
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δ = δθ∗ δ = µ

Welfare: d log Y 0.060 0.090
Technical efficiency: d log Ytech 0.033 0.090
Allocative efficiency: d log Yalloc 0.027 0.000

Real GDP per capita 0.043 0.043

Table I.2: The elasticity of welfare and real GDP per capita to market size in an economy with
homogeneous firms.
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Appendix J Chaney (2008) Entry

For the model in the main text, our entry technology follows Melitz (2003) and hence Hopen-
hayn (1992) entry. That is, there is an unbounded mass of potential entrants, and entry occurs
until the expected profits from entering the market are equal to the fixed costs of entry. In
this extension, we instead follow the entry technology from Chaney (2008), in which there is
a fixed mass of potential entrants that is proportional to the size of the market. We show that
an increase in market size continues to generate Darwinian reallocations in this version of the
model. Interestingly, the Darwinian effect on welfare also shows up in real GDP, in contrast
to the model in the main text.

As in Chaney (2008), the mass of potential entrants is assumed to be proportional to market
size, so that

M = cL,

where c is some constant. The types of the M potential entrants is given by the CDF G(θ), and
each potential entrant perfectly observes its productivity (Aθ), demand curve (given by sθ(·)),
and overhead cost ( fo,θ) before deciding whether to produce. As in the main text, we order
types θ to be increasing in the ratio of variable profits to overhead costs Xθ.

Many of the remaining equilibrium conditions remain identical to our baseline model, but
it is worth first stressing differences in the entry/selection margin and in household income.

The selection margin—which now dictates which firms decide to enter and operate in the
market—is characterized by a cutoff firm type θ∗ such that(

1 −
1
µθ∗

)
pθ∗yθ∗L − fo,θ∗ = 0,

all firms with type θ ≥ θ∗ enter and stay in the market, and all potential entrants with θ < θ∗

decide not to enter.
Since we no longer have free entry, firms will now make positive profits, and households

will receive both labor income and dividend income. Income per capita I is given by

I = w +
∫ 1

θ∗

[(
1 −

1
µθ

)
pθyθL − fo,θ

]
M
L

g(θ)dθ.

We now consider how welfare changes in response to a change in market size. Following
(9), the change in welfare can be characterized by

d log Y = (Eλ [δθ] − 1) d log M︸                   ︷︷                   ︸
New varieties

−λθ∗ (δθ∗ − 1)
g(θ∗)

1 − G(θ∗)
dθ∗︸                          ︷︷                          ︸

Entry/exit at cutoff

+Eλ
[
d log I − d log pθ

]︸                    ︷︷                    ︸
Prices (relative to income)

.
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where we have amended the last term of (9) to no includes changes in household income. (We
use the nominal wage as the numeraire, w = 1). To provide intuition, we start by simplifying
this expression using our entry technology and the selection condition. From the assumption
that the mass of potential entrants is proportional to market size (M = cL), we have:

d log M = d log L.

By log-linearizing the selection condition, we get that the change in the selection cutoff follows

g(θ∗)
1 − G(θ∗)

dθ∗ = −γθ∗
[
(σθ∗ − 1) d log P + d log L + d log I

]
.

Intuitively, increases in market size L and increases in per-capita income I both mean that
fixed costs can be spread over a greater number of units sold, which makes it easier for the
marginal firm to survive and decreases the selection cutoff. Similarly, increases in P (softening
competition) also decrease the selection cutoff.

Substituting these into our expression for welfare, we get

d log Y = (Eλ [δθ] − 1) d log L︸                  ︷︷                  ︸
New varieties

+λθ∗γθ∗ (δθ∗ − 1)
[
(σθ∗ − 1) d log P + d log L + d log I

]︸                                                            ︷︷                                                            ︸
Entry/exit at cutoff

+ d log I − Eλ
[
1 − ρθ

]
d log P︸                            ︷︷                            ︸

Prices (relative to income)

.

Note that improvements in allocative efficiency that free up labor no longer generate new
varieties, as they did in our baseline model, since now the mass of potential varieties is fixed.
Hence, all allocative efficiency gains will show up in the latter two terms, either by admitting
more entry at the selection cutoff or by decreasing prices relative to income.

Solving the general case produces a somewhat cumbersome expression, but we can gain
intuition about how the Darwinian effect shows up in this version of the model by considering
an example with zero overhead costs and constant-price-elasticity preferences (identical to
those considered in Corollary 1):

sθ(x) = x1−σθ .

Then, the change in the price aggregator and in per-capita income are given by,

Eλ [σθ − 1] d log P = −d log L,

d log I = Eλ
[

1
µθ

]
d log P + Eλ

[ 1
σθ

]
d log L

82



=

(
Eλ

[ 1
σθ

]
− Eλ

[
1
µθ

]
1

Eλ [σθ − 1]

)
d log L

=
1

Eλ [σθ − 1]
Covλ

[
σθ,

1
µθ

]
d log L.

So, the change in welfare following an increase in market size is:

d log Y = (Eλ [δθ] − 1) d log L︸                  ︷︷                  ︸
Technical efficiency

+
1

Eλ [σθ − 1]
Covλ

[
σθ,

1
µθ

]
d log L︸                                   ︷︷                                   ︸

Allocative efficiency

.

Just as in Corollary 1, we have silenced the selection and pro-competitive effects, and we are
left with an allocative efficiency gain that is solely due to heterogeneities in price elasticities
and markups, namely, the Darwinian effect. As in the model in the main text, the Darwinian
effect is unambiguously positive as long as there is non-trivial firm heterogeneity, and occurs
because a greater mass of entrants results in a reallocation toward high-markup firms, thereby
increasing allocative efficiency and (in this version of the model) decreasing prices relative to
income.

It is interesting to note that in this version of the model, the Darwinian effect will also show
up in real GDP (while it was absent from real GDP in the model in the main text). The change
in real GDP as measured by statistical agencies in this version of the model is

d log Q =
1

Eλ [σθ − 1]
Covλ

[
σθ,

1
µθ

]
d log L.

The reason that the Darwinian effect does not show in real GDP in our baseline model is that
all the freed up labor from the reallocation to high-markup firms is funneled into new variety
creation, and the welfare gains from new variety creation cannot be captured by measuring
price changes for continuing varieties. However, in this version of the model, the Darwinian
effect instead shows up as increased income, which can be measured.
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Appendix K Oligopoly Extension

In this appendix, we consider an extension of the model in which the increased entry from a
market expansion may erode firms’ oligopoly power. We do so by considering a continuum
of “product lines,” each of which contains several competing firms. We show that when
firm entry generates new product lines, an increase in market size leads to improvements in
technical efficiency due to the creation of new product lines and allocative efficiency due to
the Darwinian effect, as in our baseline results. However, when firm entry is focused instead
on generating more competitors per product line, welfare gains come from the reduction in
markups caused by the reduction in oligopoly power.

There is a continuum of product lines with types indexed by θ ∈ [0, 1]. The HSA price
aggregator P across product lines is determined implicitly by∫ 1

0
sθ(

pθ
P

)Vg(θ)dθ = 1,

where V is the mass of product lines, pθ is the price of product line θ, and the density
of product lines is given by g(θ). Within each product line, N ≥ 1 identical firms engage
in Cournot competition, with firm i in product line θ producing per-capita output yi,θ and
setting price pi,θ. Without loss of generality, we normalize the productivity of all firms to one.
The outputs of firms within a product line are perfect substitutes, so that the total (per-capita)
product line output yθ is simply the sum of all firms’ outputs:

yθ =
∑

i∈I(θ)

yi,θ = Nyi,θ,

where I(θ) denotes the set of firms in product line θ.
As in Atkeson and Burstein (2008), each firm internalizes the impact of its price on the price

index of its product line (pθ) and on total product line demand (yθ), but takes households’
aggregate spending and the cross-product line price aggregator P as given.

We use σθ to denote the elasticity of total product line consumption to the product line
price, and use ρθ to describe the curvature of demand facing the total product line, so that

σθ = −
d log yθ
d log pθ

= 1 −
pθ
P s′θ

(
pθ
P

)
sθ

(
pθ
P

) , and
d log σθ
d log(pθ

P )
= (σθ − 1)

1 − ρθ
ρθ

.

We assume overhead costs are zero, therefore shutting down any selection margin in this
extension. The free entry condition thus requires that a firm’s expected profits upon entry
equal the fixed cost (where the expectation comes from the fact that a firm does not realize its
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product line type θ until after paying the fixed cost):∫ 1

0

(
1 −

1
µi,θ

)
pi,θyi,θLg(θ)dθ = fe.

To close the model, we need to describe how the number of firms per product line (N) and
the mass of product lines (V) scale with an increase in entry. Since the total mass of firms in the
economy is M = NV, we allow the rate at which new firm creation results in new product line
creation versus heightened competition within product lines to be governed by a parameter
α, so that

N =Mα, and V =M1−α.

If α = 0, all new entry results in the creation of new product line varieties and no increase in
within-product line competition. Setting α = 0 and N = 1 thus generates a special case of our
baseline model (special case, because overhead costs are zero). On the other hand, if α = 1,
all new entry results in heightened competition within existing product lines, and no new
varieties are created.49

The solution of the firm’s profit maximization problem is

pi,θ =
Nσθ

Nσθ − 1
· w,

where w is the firm’s marginal cost. Note that firms’ markups are decreasing in the number
of competitors per product line, N, since the outputs of firms within the same product line
are perfect substitutes. Using the expression for markups and the fact that yθ = Nyi,θ, we can
rewrite the free entry condition as

L
N2

∫ 1

0

pθyθ
σθ

g(θ)dθ = fe.

It is helpful to note here that, holding all other factors constant, an increase in the number of
competitors per product line (N) has two effects on firms’ variable profits: it both reduces the
share of product line output that is supplied by a single firm, and it also leads to a decrease in
the price charged by a single firm within a product line due to the erosion of oligopoly power
within the product line. Hence, holding all other factors constant, N must grow at a rate of
√

L to maintain the same level of variable profits per firm.
Below, we present analytical results for the elasticity of per-capita welfare to an infinitesimal

49The parameter α can be micro-founded by assuming that variety creation has diminishing returns in the
total entry costs paid by firms. When variety creation is constant-returns in fixed costs paid, the number of
varieties scales exactly with the mass of entrants, and hence M = V and α = 0. Diminishing returns instead
imply α > 0, and the case where the total number of varieties is completely inelastic to fixed costs paid yields
α = 1.
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change in market size (d log Y/d log L) for the edge cases where α = 0 and α = 1 to highlight
intuition, and then present results from quantitative exercises (meant to be suggestive only).
In order to analyze the response of all variables to an infinitesimal change in market size, we
assume away the integer constraint on the number of competitors per product line N.

When α = 0 and N = 1, the change in per-capita welfare following a market expansion
is composed of a technical efficiency gain and a change in allocative efficiency due to the
Darwinian effect and pro-competitive effect, which are familiar from the main text:

d log Y =
(
δ̄ − 1

)
d log L︸          ︷︷          ︸

Technical efficiency

+


(
δ̄ − 1

)
Covλ

[
σθ,

1
µθ

]
︸                    ︷︷                    ︸

ξϵ

+Eλ
[ 1
σθ

]
Eλ

[(
1 − ρθ

)
σθ

(
1 −

δ̄
µθ

)]
︸                                    ︷︷                                    ︸

ξµ

 µ̄d log L.

If instead α = 1, we clearly will have no technical efficiency effect nor Darwinian effect.
The technical efficiency effect is zero in this case since no new product line varieties are
created—all new entry is instead allocated to increasing competition within existing product
lines. Similarly, the Darwinian effect is zero because, holding markups constant, entry does
not affect the aggregate price index. Hence, the mechanism driving the Darwinian effect (entry
drives down the price index, and leads to a reallocation away from high-elasticity/low-markup
firms) is silenced. The only effect of market entry on welfare is the pro-competitive effect:

d log Y =

Eλ[(σθ−1)ρeffective
θ ]Eλ[(µθ−1)ρeffective

θ ]
Eλ[(σθ−1)(µθ−1)ρeffective

θ ] + Eλ
[
1 − ρeffective

θ

]
Eλ[(σθ−1)ρeffective

θ ]Eλ
[

1+ρeffective
θ
σθ

]
Eλ[(σθ−1)(µθ−1)ρeffective

θ ] + Eλ
[
σθ−1
σθ

]
+ (N − 1)Eλ

[
1 − ρeffective

θ

]Eλ
[ 1
σθ

]
d log L ≥ 0,

where

ρeffective
θ =

[
Nσθ − 1

(N − 1) σθρθ + (σθ − 1)

]
ρθ ≥ 0,

is the partial equilibrium pass-through of a change in the price aggregator to the desired
markup of a firm with type θ. (When N = 1, ρeffective

θ is simply equal to ρθ.)
While the full expression is rather unwieldy, it is immediately evident that the pro-

competitive effect in this case is always positive: an increase in entry erodes oligopoly pricing
power, lowering markups and increasing allocative efficiency. Intuitively, since there are no
variety gains from new entry, entry is always socially wasteful. Thus, entry is always excessive
as long as markups are greater than one. Since an increase in market size leads all firms to
reduce their markups, welfare improves.

For more intuition, consider the case where all firms are homogeneous. Then the change
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in per-capita welfare is

d log Y =
1
2
(
µ − 1

)
d log L.

We can see that the pro-competitive effect is increasing in the initial markup µ. Since the
sole gains from an increase in market size come from eroding oligopoly power and reducing
markups, when µ is small there is little scope for welfare improvements. The reason that
welfare gains are scaled by 1/2 is that, as mentioned above, the free entry condition implies
that the number of firms scales with the square-root of market size.50 In the heterogeneous
firm case, the pro-competitive effect also includes reallocations across product lines due to
the fact that prices of each product line may be differentially affected by the increase in the
number of competitors N, leading to the more complicated general expression.

We now present some stylized quantitative results to illustrate the forces depicted in this
appendix. These results are not the product of a full calibration and should not be interpreted
as such. Rather, these results illustrate the fact that when an increase in market size creates
new product lines, the technical efficiency and Darwinian effects are most important (as in
our baseline), but that if this entry is instead directed at creating more competitors in existing
product lines, that will put more weight on the pro-competitive effect.

For these results, we assume that N = 1 in the initial equilibrium. (Starting at some N , 1
would mean that the model is no longer consistent with the method we use to back out
elasticities, markups, and consumer surplus ratios from the data.)

Table K.1 shows the results for values of α ranging from 0 to 0.2. As α increases, both the
technical efficiency and Darwinian effect attenuate, since fewer resources are allocated to the
creation of new product line varieties. Meanwhile, the pro-competitive effect, which has a
mildly negative effect on welfare at α = 0, becomes more positive, since the pro-competitive
now also includes the beneficial erosion of oligopoly power.

α = 0 α = 0.05 α = 0.1 α = 0.15 α = 0.2

Technical efficiency: 0.090 0.085 0.081 0.076 0.072
Darwinian effect: 0.631 0.422 0.301 0.222 0.168
Pro-competitive effect: -0.099 -0.043 -0.016 -0.001 0.008

Table K.1: Welfare changes due to technical efficiency and allocative efficiency in response to
a change in population in the oligopoly model under different values of α.

50In this case with α = 1 and homogeneous firms, we can rewrite the free entry condition as

L
N2

py
σ
=

L
N2

w
σ
= fe.

Since σ, w, and fe do not change with the increase in market size, we must have d log L = 2d log N.
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Appendix L Markup and Pass-through Variation Unrelated to

Size

The calibration in the main text assumes that firm markups and pass-throughs vary only as
a function of firm size. In practice, other factors unrelated to firm size may also influence
markups and pass-throughs, however. In this appendix, we consider how our results change
if we allow for additional heterogeneity orthogonal to firm size. First, we consider how our
analytical results change if we add variation in firms’ pass-throughs and price elasticities
(which, by the Lerner condition, lead to variation in firms’ markups) due to factors unrelated
to size. Second, we recalculate the Darwinian effect when there is additional variation in
markups unrelated to size commensurate with markup estimates by De Loecker et al. (2016).
Both analytically and quantitatively, this additional heterogeneity increases the magnitude of
the Darwinian effect.

L.1 Analytical Results with Variation Unrelated to Size

We start by considering how additional variation in price elasticities and pass-throughs unre-
lated to size affect our analytical results. Suppose the price elasticity and pass-through of firm
i are given by

σi = E[σ|λi]︸ ︷︷ ︸
σλ

+ϵi,

ρi = E[ρ|λi]︸ ︷︷ ︸
ρλ

+νi,

where ϵi and νi are orthogonal to λi (and hence to σλ and ρλ), but may be correlated with each
other. We can microfound this by perturbing the expenditure share function sθ(·) by firm.

Introducing this variation does not change the sales-weighted average elasticity and pass-
through, since, due to the law of iterated expectations,

Eλ[σi] = E[E[λiσi|λi]]/E[λi]

= E[λiσλ]/E[λi]

= Eλ[σλ].

However, terms that depend on the covariance of elasticities, markups, and/or pass-
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throughs may change. For example, by Jensen’s inequality,

Eλ
[ 1
σi

]
= Eλ

[ 1
σλ + εi

]
≥ Eλ

[ 1
σλ

]
.

We can thus consider how ξϵ, ξθ
∗ , and ξµ change when we allow for this additional variation

in elasticities and pass-throughs, which corresponds to the allocative gains from an increase
in market size.

Darwinian effect:

ξϵ = (Eλ [δi] − 1) Covλ

[
σi,

1
µi

]
= (Eλ [δi] − 1)

(
Covλ

[
σλ + ϵi,−

1
σλ + ϵi

])
= (Eλ [δi] − 1)

(
Eλ [σλ]Eλ

[ 1
σλ + ϵi

]
− 1

)
≥ (Eλ [δi] − 1)

(
Eλ [σλ]Eλ

[ 1
σλ

]
− 1

)
.

Hence, the Darwinian effect increases in magnitude when we allow for additional variation in
elasticities. Intuitively, this is because the Darwinian effect depends on heterogeneity in price
elasticities and markups across firms, and so greater variation leads to a larger Darwinian
effect.

Selection effect:

ξθ
∗

= (Eλ [δi] − δθ∗)λθ∗γθ∗
(
σθ∗Eλ

[ 1
σi

]
− 1

)
= (Eλ [δi] − δθ∗)λθ∗γθ∗

(
σθ∗Eλ

[ 1
σλ

]
− 1

)
+ (Eλ [δi] − δθ∗)λθ∗γθ∗σθ∗

(
Eλ

[ 1
σi

]
− Eλ

[ 1
σλ

])
︸                  ︷︷                  ︸

>0

.

The change in the selection effect is hard to gauge from this formula alone, since the additional
variation in price elasticities in pass-throughs may change which firm type θ is the cutoff firm
θ∗. If we hold the price elasticity, consumer surplus ratio, and sales share of the marginal firm
type constant, whether additional variation in elasticities increases or decreases the selection
effect depends on whether δθ∗ is greater or less than Eλ[δθ].

Pro-competitive effect:

ξµ = Eλ
[(

1 − ρi
)

(σi − Eλ [δi] (σi − 1))
]

= − (Eλ [δi] − 1)Eλ
[(

1 − ρi
)
σi
]
+ Eλ [δi]Eλ

[
1 − ρi

]
= (Eλ [δi] − 1) Covλ

(
ρi, σi

)
− (Eλ [δi] − 1)

(
Eλ

[
1 − ρi

]
Eλ [σi]

)
+ Eλ [δi]Eλ

[
1 − ρi

]
= (Eλ [δi] − 1)

[
Covλ

(
ρλ, σλ

)
+ Covλ (νi, ϵi)

]
− (Eλ [δi] − 1)

(
Eλ

[
1 − ρλ

]
Eλ [σλ]

)
+ Eλ [δi]Eλ

[
1 − ρλ

]
.
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Figure L.1: Scatterplots of product-level markup estimates by De Loecker et al. (2016) for
Indian manufacturing firms against output quantity, sales, and estimated marginal costs. As
in Figure 1 of De Loecker et al. (2016), plotted variables are demeaned by product-year fixed
effects and trimmed at the 3rd and 97th percentiles.

Hence, whether the pro-competitive effect becomes more or less positive depends on the
covariance Covλ(νi, ϵi). If the noise in pass-throughs and price elasticities is positively related,
high markup (low elasticity) firms cut their markups more in response to a fall in the aggregate
price index, leading to a beneficial reallocation to high-markup firms and an increase in
welfare.

L.2 Quantitative Results with Markup Variation Unrelated to Size

We now consider how our quantitative results on the magnitude of the Darwinian effect change
if we allow for additional variation in markups unrelated to size consistent with previous
empirical work. We use estimates made publicly available by De Loecker et al. (2016), who
use price and quantity data to estimate markups at the product level for Indian manufacturing
firms. Of course, the geographic and institutional context for Indian manufacturing firms is
quite different from our baseline calibration; we present these results only as an illustration of
how additional variation in markups would affect our results.

In Figure L.1, we plot log product markups against log output quantity, log sales, and log
of estimated marginal costs. All variables are demeaned by product-year fixed effects and
trimmed at the 3rd and 97th percentiles (the first panel replicates Figure 1 from De Loecker et
al. 2016). Estimated markups are positively correlated with quantity and sales and negatively
correlated with estimated marginal costs, as in our calibration. Conditional on sales, there is
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also substantial dispersion in the estimated markups. To estimate the portion of variation in
markups explained by size, we regress the demeaned log markups on log sales in the data
provided by De Loecker et al. (2016). We find that R2 = 0.16, which means that 84% of the
variation in markups is due to factors orthogonal to size.

As a back-of-the-envelope exercise, we simulate how adding variation in markups unre-
lated to size affects the magnitude of the Darwinian effect. We do so by simulating 1 million
draws from our firm sales distribution, and adding a random normal error to the markup a
firm of that sales share has in our baseline calibration. We choose the standard deviation of the
shocks by the simulated method of moments to match the R2 of the regression of log markups
on log sales.51 Using these markup estimates (and the corresponding price elasticities im-
plied by the Lerner condition), we find that the Darwinian effect is 0.380 when we choose
Eλ[δθ] = 1.090. This is moderately larger than our baseline estimate in Table 1, consistent
with our analytic results above that additional variation in markups and price elasticities will
strengthen the Darwinian effect.

51Note that we bound log markups from below by 1.01, to ensure that we do not get markups below one. We
find that normal errors in markups with a standard deviation of 0.165 generate an R2 = 0.16 to match the data
from De Loecker et al. (2016).
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Appendix M The Darwinian Effect under Separable Prefer-

ences

A key contribution of our analysis is to isolate the Darwinian effect, which captures how an
increase in market size alleviates cross-sectional misallocation. In this appendix, we describe
necessary conditions for the Darwinian effect to be positive and discuss cases in which the
Darwinian effect will not appear.

The Darwinian effect captures how a fall in the price index affects cross-sectional misal-
location, holding firms’ markups constant. Let Xvariable = {lθ/Lvariable

} denote the fraction of
variable production labor allocated to the production of each variety θ. We show in Appendix
F that the effect of a change in the cross-sectional allocation of resources on welfare is

d log Y =
∂ logY
∂Xvariable

dXvariable = Covλ
[
µ̄/µθ, d log lθ

]
. (38)

That is, a reallocation of labor to firms with initially high markups alleviates cross-sectional
misallocation and raises efficiency. This covariance between firms’ initial (inverse) markups
and the change in their use of labor for variable production is a sufficient statistic for how a
change in the cross-sectional allocation of resources affects welfare.

Now, consider a class of preferences in which we can express the per-capita demand curve
faced by each variety as

yθ = Q Dθ(pθ/P), (39)

where Q = Q({p},Y) is an aggregate demand shifter that depends on the vector of all firms’
prices and money-metric utility Y, and Dθ(·) is a function that takes the firm’s price relative to
an aggregate price index, pθ/P, as an argument and may vary with firm type θ. (Note that P
is an aggregate price index, but is not required to be the ideal price index.)

Note that these demand curves are not a complete specification of preferences. Rather,
we are considering the case where preferences yield per-capita demand curves that satisfy
(39). For example, the class of preferences described by Arkolakis et al. (2019) satisfy (39);
as do the HSA, HDIA, and HIIA preferences discussed by Matsuyama and Ushchev (2017),
the “Gorman-Pollak” demand system discussed by Fally (2022), and the (non-homothetic)
additively separable preferences used by Krugman (1979).52 Crucially, the demand curves
in (39) satisfy a version of the property termed “generalized separability” by Fally (2022),
where a variety’s demand depends on its price relative to an aggregate price index. Nearly all
models in the macroeconomic and international trade literature assume that demand takes a

52For example, for HSA preferences, Q = P, Dθ(x) = sθ(x)/x, and the aggregate price index P is given by (2).
For the “Gorman-Pollak” demand system discussed by Fally (2022), take Equation (2) from Fally 2022 and set
F = P, H = 1/Q).
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form consistent with (39), as discussed by Burstein and Gopinath (2014) and Arkolakis et al.
(2019).

When demand curves follow (39), we can rewrite the covariance in (38) (holding firms’
markups constant) as

Covλ

[
µ̄/µθ,

d log lθ
d log L

]
= Covλ

µ̄/µθ, ∂ log Dθ

∂ log pθ
P

 d log P
d log L

.

This covariance is the Darwinian effect, since it captures how increased entry affects the cross-
sectional allocation of resources and thus welfare. From the above expression, we see that
three conditions are necessary for the Darwinian effect to increase welfare: (1) there must be
initial heterogeneity in firms’ markups, (2) the aggregate price index must fall in response
to the increase in market size, and (3) the partial elasticity of demand with respect to firms’
relative prices, −∂ log Dθ

∂ log(pθ/P) , must be heterogeneous across firms and positively correlated with

firms’ inverse markups. We call −∂ log Dθ

∂ log(pθ/P) the partial elasticity of demand facing firm θ because
the true elasticity of demand facing the firm may also include changes in Q and P internalized
by the firm.53 This partial elasticity of demand may be heterogeneous across firms either
because firms’ initial prices vary and Dθ is non-isoelastic, or because Dθ varies with θ. When
(1), (2), and (3) hold, the Darwinian effect will exist and be positive.

The third condition explains why nested CES preferences, as in Atkeson and Burstein
(2008), will not generate a Darwinian effect. In that case, the demand curve faced by firm i in
sector I is

yi

YI
=

(YI
Y

)− η1
η0

(pi

P

)−η0

, (40)

where YI is a CES aggregate of output in sector I, P is the aggregate price index across
sectors, and η0 and η1 are the within- and across-sector elasticities of substitution. Under
these preferences, the partial elasticity of demand with respect to firms’ relative prices (η0) is
constant across firms and thus there is no Darwinian effect.

However, if we depart from the knife-edge case in which partial elasticities of demand
relative to the aggregate price index are uniform across all firms, increases in market size
will generate Darwinian reallocations across firms. Appendix K presents an extension of the
model with oligopolistic competition between firms within product lines. In that extension,
the Darwinian effect persists as long as the aggregator of product line outputs is non-isoelastic

53The elasticity of demand facing the firm is instead

σθ =
−∂ log yθ
∂ log pθ

= −
∂ log Q
∂ log pθ

−
∂ log Dθ

∂ log( pθ
P )

(
1 −

∂ log P
∂ log pθ

)
.

Under oligopolistic competition, firms internalize their impact on the aggregate indices Q and P, and hence the
partial elasticity of Dθ and the demand elasticity facing the firm may differ. This is why the Atkeson and Burstein
(2008) model has heterogeneous markups, but uniform partial elasticities of Dθ.
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and an increase in market size decreases the aggregate price index.
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Appendix N Klenow-Willis Calibration

In the main text, we caution that using an off-the-shelf functional form may mute important
features of the data. As an illustration, we present the results of our model using Klenow
and Willis (2016) preferences, a parametric form for the Kimball aggregator that is used
often in the literature. We show that Klenow and Willis (2016) preferences are unable to
match the empirical data. When calibrated using standard parameters from the literature,
these preferences overstate the importance of technical efficiency changes and understate the
importance of allocative efficiency changes.

Under Klenow and Willis (2016) preferences, the markup and pass-through functions are

µθ = µ(
yθ
Y

) =
1

1 − 1
σ ( yθ

Y ) ϵσ
, (41)

ρθ = ρ(
yθ
Y

) =
1

1 + ϵ
σ−(

yθ
Y )

ϵ
σ

=
1

1 + ϵ
σµθ

. (42)

where the parameters σ and ϵ are the elasticity and superelasticity (i.e., the rate of change in
the elasticity) that firms would face in a symmetric equilibrium. This functional form imposes
a maximum output of (yθ/Y)max = σ

σ
ϵ , at which markups approach infinity.

These preferences are unable to match the empirical distribution of firm pass-throughs
without counterfactually large markups. To see why, note that the pass-through function
ρ(·) is strictly decreasing, and that the maximum pass-through admissible (for a firm with
yθ/Y = 0) is

ρmax =
1

1 + ϵ/σ
. (43)

Amiti et al. (2019) estimate the average pass-through for the smallest 75% of firms in
Prodcom is 0.97. In order to match ρ = 0.97, we must choose ϵ/σ ≈ 0.03.

This makes it difficult, however, to match the incomplete pass-throughs estimated for the
largest firms. To match a pass-through of ρθ = 0.3 with ϵ/σ = 0.03, we need a markup of
µθ ≈ 78 for the largest firms. In contrast, our non-parametric procedure matches the pass-
through distribution with realistic markups of around 2 for the largest firms (shown in the
main text, Figure 3a). This roughly accords with estimates of markups by De Loecker et al.
(2020).

Rather than attempting to match the empirical pass-through distribution, suppose we used
a set of parameters from the literature. We adopt the calibration from Appendix D of Amiti
et al. (2019): σ = 5, ϵ = 1.6, and firm productivities are drawn from a Pareto distribution with
shape parameter equal to 8.54 The simulated distributions of firm pass-throughs and sales

54We calibrate the model by drawing 10,000 firms and finding a fixed point in output.
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shares are shown in Figure N.1. Over the range of drawn productivities, we see little variation
in pass-through.

Figure N.1: Pass-through ρθ and sales share density logλθ under Klenow and Willis (2016)
preferences.
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Table N.1 shows the response of welfare and real GDP per capita to an increase in market
size for Klenow and Willis (2016) preferences, with the results from the main text for compar-
ison. We find that the calibration of Klenow and Willis (2016) preferences attributes nearly
all gains to technical efficiency gains, rather than allocative efficiency gains. In particular, the
parametric preferences dramatically understate the importance of the Darwinian channel.

HDIA preferences Klenow-Willis
µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.303 0.317 0.268
Technical efficiency: d log Ytech 0.033 0.090 0.260
Allocative efficiency: d log Yalloc 0.269 0.227 0.008

Darwinian effect: d log Yϵ
− d log Ytech 0.284 1.500 0.009

Selection effect: d log Yϵ,θ∗
− d log Yϵ 0.000 -1.110 -0.000

Pro-competitive effect: d log Yϵ,θ∗,µ
− d log Yϵ,θ∗ -0.015 -0.162 -0.001

Real GDP per capita 0.052 0.053 0.076

Table N.1: Comparison of the elasticity of welfare and real GDP per capita to population in
the benchmark and Klenow and Willis (2016) calibrations.
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