

Discussion of “Trade Shocks in Distorted Economies: Evidence from Firm-Level Import Data”

Rodrigo Adao, Ana Fernandes, Chang-Tai Hsieh, and Jose M. Quintero

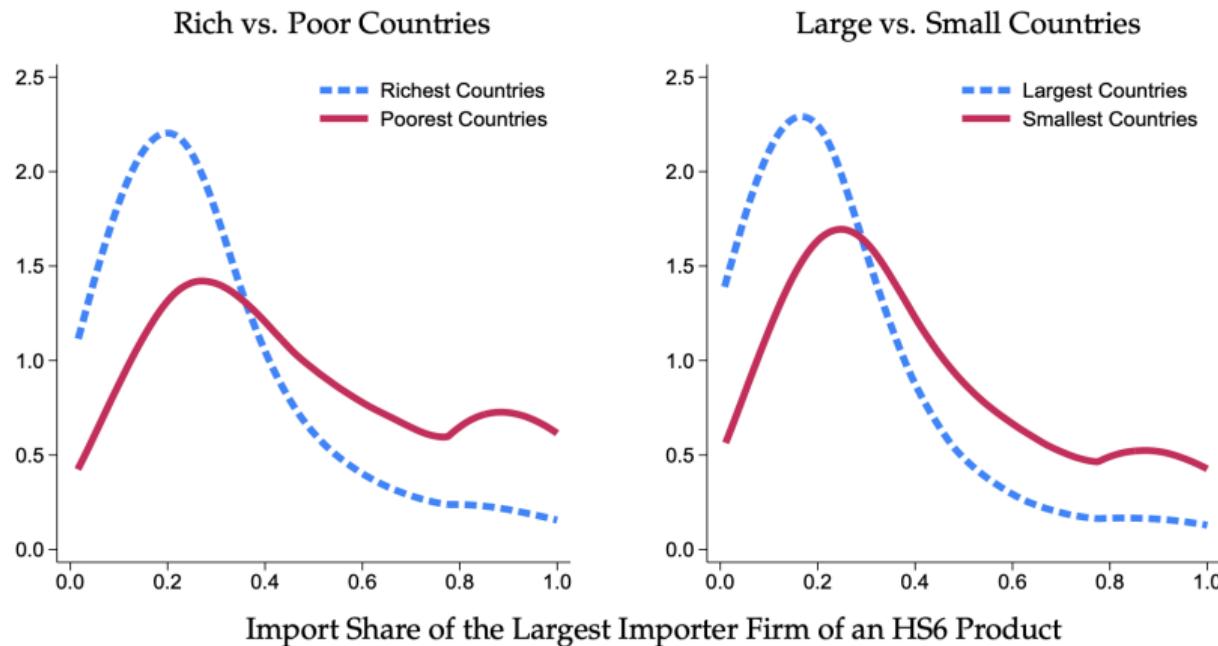
Discussion by Kunal Sangani

June 2025

Ambitious Paper Bringing Importer-Level Data to Trade Liberalizations

- ① Firm-level data to measure importer firm concentration across 57 countries.
 - Importer firm concentration higher in **poorer** and **smaller** countries.

Ambitious Paper Bringing Importer-Level Data to Trade Liberalizations


- ① Firm-level data to measure importer firm concentration across 57 countries.
 - Importer firm concentration higher in **poorer** and **smaller** countries.
- ② Model mapping importer firm sales shares to markups.
 - Discipline Atkeson-Burstein model parameters using response of quantities to tariffs.

Ambitious Paper Bringing Importer-Level Data to Trade Liberalizations

- ① Firm-level data to measure importer firm concentration across 57 countries.
 - Importer firm concentration higher in **poorer** and **smaller** countries.
- ② Model mapping importer firm sales shares to markups.
 - Discipline Atkeson-Burstein model parameters using response of quantities to tariffs.
- ③ Efficiency gains from trade liberalization depend on markup dispersion + reallocations.
 - In liberalizations, tariffs fall by diff amts across goods/firms. (Different starting points?)
 - Reallocation to high-markup goods/firms increases allocative efficiency.
- ④ Larger scope for gains in **poor**, **small** countries. Comparable to neoclassical channels!

Importer Firm Concentration

Figure 1: Distribution of the Import Share of the Largest Importer Firm in an HS6 Product

- Importer firm concentration higher in **poorer** and **smaller** countries.

Importer Firm Concentration → Markups?

- Importer firm concentration higher in **poorer** and **smaller** countries.
- Nested CES model (Atkeson and Burstein 2008) maps market shares to markups.
 - Predicts that importer markups are higher and more dispersed in poor / small countries.
 - ⇒ More scope for efficiency gains from reducing + equalizing tariffs.

Importer Firm Concentration → Markups?

- Importer firm concentration higher in **poorer** and **smaller** countries.
- Nested CES model (Atkeson and Burstein 2008) maps market shares to markups.
 - Predicts that importer markups are higher and more dispersed in poor / small countries.
 - ⇒ More scope for efficiency gains from reducing + equalizing tariffs.
- Assumption is that market shares / concentration driven by exogenous variation in number of importers and relative productivities.
 - Number of firms, concentration, market shares are all endogenous industry outcomes.
 - Not so clear that mapping market shares to markups is without loss.

HHI and Markups: A Simple Model

- CES preferences over N symmetric importing firms, with total expenditures E .

$$\max U = \left[\sum_{i=1}^N q_i^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}. \quad \text{s.t.} \quad \sum_{i=1}^N p_i q_i = E.$$

- Unit cost of imports normalized to one. Symmetric price is

$$p = \mu = \frac{\varepsilon}{\varepsilon - 1}, \quad \text{where} \quad \varepsilon = \sigma \left(1 - \frac{1}{N} \right) + \frac{1}{N}.$$

- Number of firms N given by zero-profit condition, with fixed entry cost F :

$$\pi = (p - 1) \frac{E}{pN} - F = 0.$$

Assume $F < E$ so more than one firm enters. Ignore integer constraints on N .

HHI and Markups: A Simple Model

- Comparative statics of HHI and markups in elasticity of substitution σ , expenditures E .
 - Expenditures E captures **market size**.
 - Elasticity of substitution σ captures effect of **income** on price sensitivity.

(E.g., Harrod 1936, Alessandria and Kaboski 2011, Simonovska 2015, Auer et al. 2022, Sangani 2023)

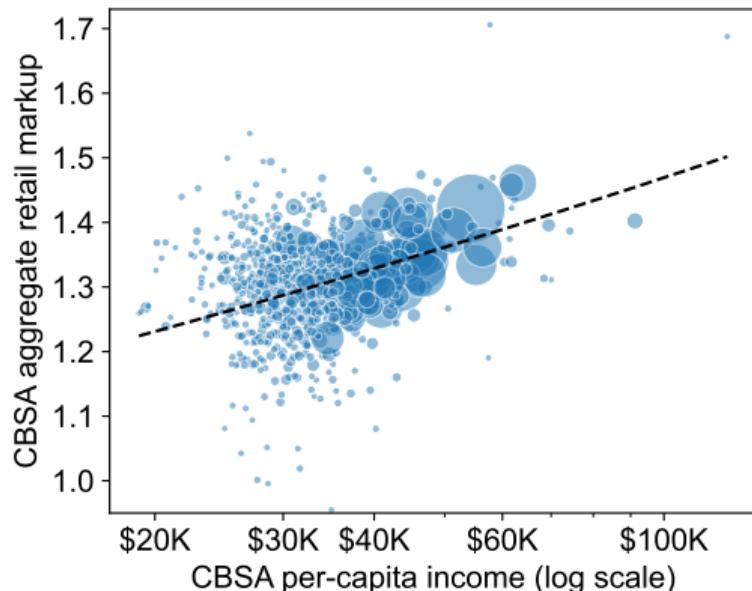
$$\text{HHI} = \sum_{i=1}^N (1/N)^2 = \frac{\sigma}{\sigma + (E/F - 1)}.$$

$$\mu = \frac{\sigma}{\sigma - 1} \left[1 + \frac{1}{\sigma} \frac{1}{N-1} \right] = \frac{\sigma}{\sigma - 1} \frac{E/F}{E/F - 1}.$$

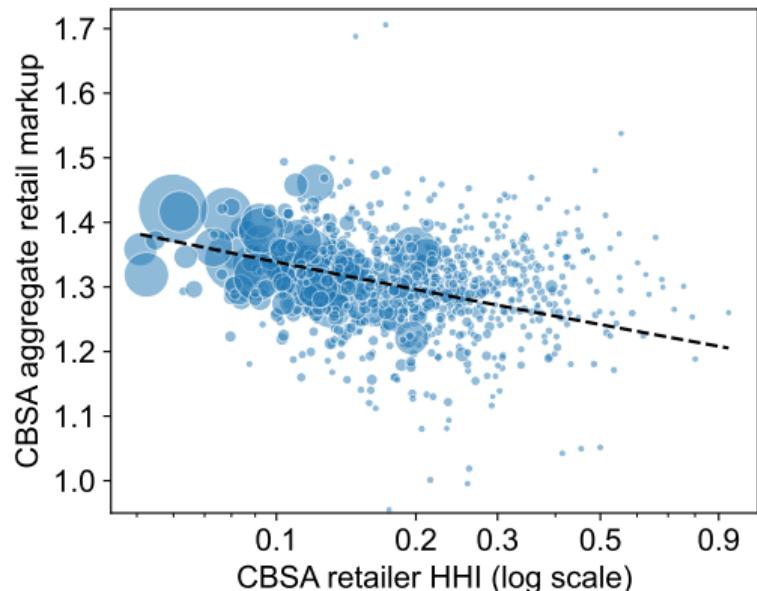
HHI and Markups: A Simple Model

- Comparative statics of HHI and markups in elasticity of substitution σ , expenditures E .
 - Expenditures E captures **market size**.
 - Elasticity of substitution σ captures effect of **income** on price sensitivity.
(E.g., Harrod 1936, Alessandria and Kaboski 2011, Simonovska 2015, Auer et al. 2022, Sangani 2023)

$$\text{HHI} = \sum_{i=1}^N (1/N)^2 = \frac{\sigma}{\sigma + (E/F - 1)}.$$
$$\mu = \frac{\sigma}{\sigma - 1} \left[1 + \frac{1}{\sigma} \frac{1}{N-1} \right] = \frac{\sigma}{\sigma - 1} \frac{E/F}{E/F - 1}.$$


- Importer firm HHI **decreases** with **market size** ($\uparrow E$) and with **income** ($\downarrow \sigma$).
- Markups **decrease** with **market size** ($\uparrow E$), but they **increase** with **income** ($\downarrow \sigma$).

An Example of Why We May Worry


- Whether \uparrow HHI leads to \uparrow markups depends on source of variation (income vs. size).

An Example of Why We May Worry

- Whether \uparrow HHI leads to \uparrow markups depends on source of variation (income vs. size).
- E.g., across U.S. cities, retail markups *negatively* correlated with HHI.

(a) Markups vs. per-capita income.

(b) Markups vs. retailer HHI.

An Example of Why We May Worry

- As for importers, retailer market concentration is higher in **poorer** and **smaller** cities.
- But we would be wrong to associate this with higher markups!

	<i>Retailer HHI</i>		<i>Log Agg. Retail Markup</i>		
	(1)	(2)	(3)	(4)	(5)
Log Income / Capita	−0.163** (0.018)	−0.048** (0.015)	0.110** (0.016)	0.095** (0.020)	
Log Population		−0.020** (0.002)		0.003 (0.003)	
Retailer HHI					−0.266** (0.048)
<i>N</i>	881	881	881	881	881
<i>R</i> ²	0.26	0.38	0.27	0.28	0.17

Note: Unit of observation is a CBSA. Retailer HHI and retail markups from Sangani (2023). Robust SEs.

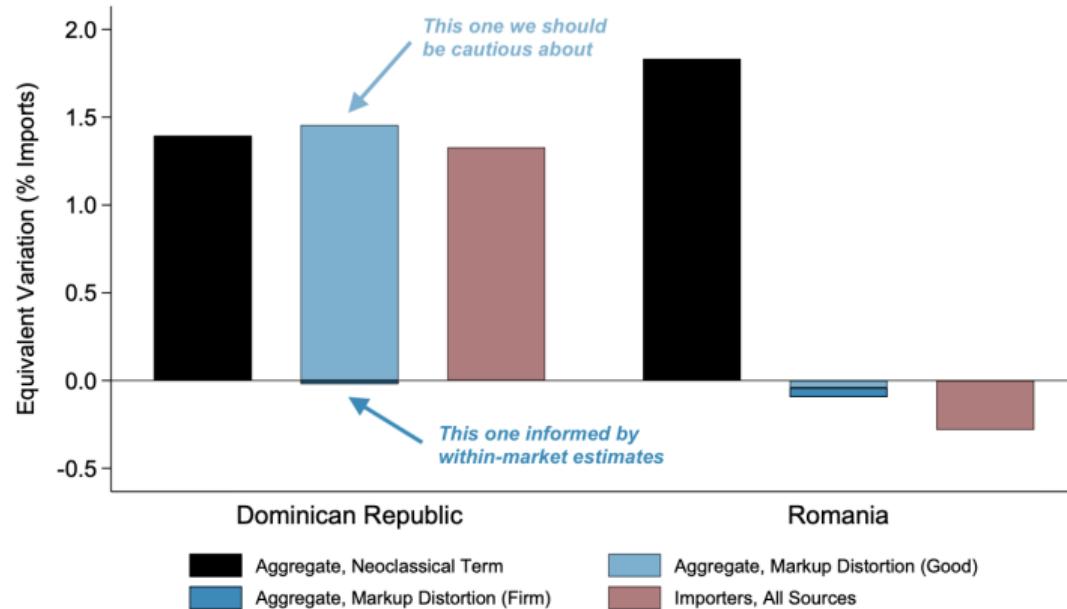
Implications for Adao et al. results

- With heterogeneous firms, elasticity of firm f in market g is $\varepsilon_{gf} = \sigma_g(1 - m_{gf}) + m_{gf}$.
 - Within market, higher market share $m_{gf} \Rightarrow$ lower elasticity, higher markups.
 - But across markets, low income \Rightarrow higher σ_g , higher market shares, lower markups.
- In regression of the form:

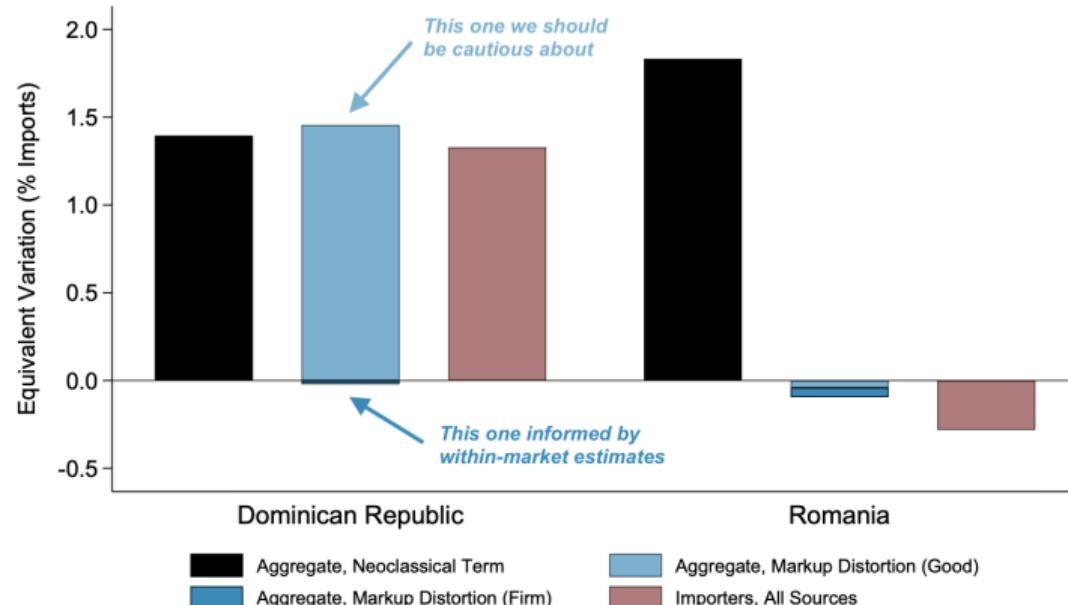
$$\Delta \log q_{gf} = \beta(m_{gf}) \Delta \log p_{gf} + \phi_g + \varepsilon_{gf},$$

$\beta(m_{gf})$ captures *within-market* effect of market share on elasticity.

Implications for Adao et al. results


- With heterogeneous firms, elasticity of firm f in market g is $\varepsilon_{gf} = \sigma_g(1 - m_{gf}) + m_{gf}$.
 - Within market, higher market share $m_{gf} \Rightarrow$ lower elasticity, higher markups.
 - But across markets, low income \Rightarrow higher σ_g , higher market shares, lower markups.
- In regression of the form:

$$\Delta \log q_{gf} = \beta(m_{gf}) \Delta \log p_{gf} + \phi_g + \varepsilon_{gf},$$


$\beta(m_{gf})$ captures *within-market* effect of market share on elasticity.

- Empirically, $\beta(m_{gf})$ decreasing, means **within-good** results go the right way.
- But different σ_g across markets absorbed in $\phi_g \Rightarrow$ worry about **cross-good** results, **cross-country** comparisons.
 - Different HHI across goods can likewise be due to differences in consumer price-sensitivity.

Implications for Adao et al. results

Implications for Adao et al. results

- One solution: Measure missing intercept. E.g., for market characteristics X_g , estimate

$$\Delta \log q_{gf} = \beta(m_{gf}; X_g) \Delta \log p_{gf} + \phi_g + \varepsilon_{gf},$$

Conclusion

- Ambitious paper with a wealth of new importer-level data and stylized facts.
- Brings efficiency gains from micro-reallocations to center focus.
- Reallocations across firms may be as important as neoclassical channels!
- Mapping from importer market shares to markups not innocuous.
 - Many papers make this leap with Atkeson and Burstein (2008) model.

Alessandria, G. and J. P. Kaboski (2011). Pricing-to-market and the failure of absolute PPP. *American Economic Journal: Macroeconomics* 3(1), 91–127.

Atkeson, A. and A. Burstein (2008). Pricing-to-market, trade costs, and international relative prices. *American Economic Review* 98(5), 1998–2031.

Auer, R. A., A. Burstein, S. Lein, and J. Vogel (2022). Unequal expenditure switching: Evidence from Switzerland. Technical Report 29757, National Bureau of Economic Research.

Harrod, R. F. (1936). *Trade Cycle. An essay*. London: Oxford University Press.

Sangani, K. (2023). Markups across the income distribution: Measurement and implications. Working paper.

Simonovska, I. (2015). Income differences and prices of tradables: Insights from an online retailer. *The Review of Economic Studies* 82(4), 1612–1656.